Annotation of rpl/lapack/lapack/dgees.f, revision 1.12

1.8       bertrand    1: *> \brief <b> DGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DGEES + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgees.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgees.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgees.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
                     22: *                         VS, LDVS, WORK, LWORK, BWORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBVS, SORT
                     26: *       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       LOGICAL            BWORK( * )
                     30: *       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
                     31: *      $                   WR( * )
                     32: *       ..
                     33: *       .. Function Arguments ..
                     34: *       LOGICAL            SELECT
                     35: *       EXTERNAL           SELECT
                     36: *       ..
                     37: *  
                     38: *
                     39: *> \par Purpose:
                     40: *  =============
                     41: *>
                     42: *> \verbatim
                     43: *>
                     44: *> DGEES computes for an N-by-N real nonsymmetric matrix A, the
                     45: *> eigenvalues, the real Schur form T, and, optionally, the matrix of
                     46: *> Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
                     47: *>
                     48: *> Optionally, it also orders the eigenvalues on the diagonal of the
                     49: *> real Schur form so that selected eigenvalues are at the top left.
                     50: *> The leading columns of Z then form an orthonormal basis for the
                     51: *> invariant subspace corresponding to the selected eigenvalues.
                     52: *>
                     53: *> A matrix is in real Schur form if it is upper quasi-triangular with
                     54: *> 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
                     55: *> form
                     56: *>         [  a  b  ]
                     57: *>         [  c  a  ]
                     58: *>
                     59: *> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
                     60: *> \endverbatim
                     61: *
                     62: *  Arguments:
                     63: *  ==========
                     64: *
                     65: *> \param[in] JOBVS
                     66: *> \verbatim
                     67: *>          JOBVS is CHARACTER*1
                     68: *>          = 'N': Schur vectors are not computed;
                     69: *>          = 'V': Schur vectors are computed.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] SORT
                     73: *> \verbatim
                     74: *>          SORT is CHARACTER*1
                     75: *>          Specifies whether or not to order the eigenvalues on the
                     76: *>          diagonal of the Schur form.
                     77: *>          = 'N': Eigenvalues are not ordered;
                     78: *>          = 'S': Eigenvalues are ordered (see SELECT).
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] SELECT
                     82: *> \verbatim
1.10      bertrand   83: *>          SELECT is a LOGICAL FUNCTION of two DOUBLE PRECISION arguments
1.8       bertrand   84: *>          SELECT must be declared EXTERNAL in the calling subroutine.
                     85: *>          If SORT = 'S', SELECT is used to select eigenvalues to sort
                     86: *>          to the top left of the Schur form.
                     87: *>          If SORT = 'N', SELECT is not referenced.
                     88: *>          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
                     89: *>          SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
                     90: *>          conjugate pair of eigenvalues is selected, then both complex
                     91: *>          eigenvalues are selected.
                     92: *>          Note that a selected complex eigenvalue may no longer
                     93: *>          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
                     94: *>          ordering may change the value of complex eigenvalues
                     95: *>          (especially if the eigenvalue is ill-conditioned); in this
                     96: *>          case INFO is set to N+2 (see INFO below).
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] N
                    100: *> \verbatim
                    101: *>          N is INTEGER
                    102: *>          The order of the matrix A. N >= 0.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in,out] A
                    106: *> \verbatim
                    107: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                    108: *>          On entry, the N-by-N matrix A.
                    109: *>          On exit, A has been overwritten by its real Schur form T.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] LDA
                    113: *> \verbatim
                    114: *>          LDA is INTEGER
                    115: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[out] SDIM
                    119: *> \verbatim
                    120: *>          SDIM is INTEGER
                    121: *>          If SORT = 'N', SDIM = 0.
                    122: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                    123: *>                         for which SELECT is true. (Complex conjugate
                    124: *>                         pairs for which SELECT is true for either
                    125: *>                         eigenvalue count as 2.)
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[out] WR
                    129: *> \verbatim
                    130: *>          WR is DOUBLE PRECISION array, dimension (N)
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[out] WI
                    134: *> \verbatim
                    135: *>          WI is DOUBLE PRECISION array, dimension (N)
                    136: *>          WR and WI contain the real and imaginary parts,
                    137: *>          respectively, of the computed eigenvalues in the same order
                    138: *>          that they appear on the diagonal of the output Schur form T.
                    139: *>          Complex conjugate pairs of eigenvalues will appear
                    140: *>          consecutively with the eigenvalue having the positive
                    141: *>          imaginary part first.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[out] VS
                    145: *> \verbatim
                    146: *>          VS is DOUBLE PRECISION array, dimension (LDVS,N)
                    147: *>          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
                    148: *>          vectors.
                    149: *>          If JOBVS = 'N', VS is not referenced.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[in] LDVS
                    153: *> \verbatim
                    154: *>          LDVS is INTEGER
                    155: *>          The leading dimension of the array VS.  LDVS >= 1; if
                    156: *>          JOBVS = 'V', LDVS >= N.
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[out] WORK
                    160: *> \verbatim
                    161: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    162: *>          On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
                    163: *> \endverbatim
                    164: *>
                    165: *> \param[in] LWORK
                    166: *> \verbatim
                    167: *>          LWORK is INTEGER
                    168: *>          The dimension of the array WORK.  LWORK >= max(1,3*N).
                    169: *>          For good performance, LWORK must generally be larger.
                    170: *>
                    171: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    172: *>          only calculates the optimal size of the WORK array, returns
                    173: *>          this value as the first entry of the WORK array, and no error
                    174: *>          message related to LWORK is issued by XERBLA.
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[out] BWORK
                    178: *> \verbatim
                    179: *>          BWORK is LOGICAL array, dimension (N)
                    180: *>          Not referenced if SORT = 'N'.
                    181: *> \endverbatim
                    182: *>
                    183: *> \param[out] INFO
                    184: *> \verbatim
                    185: *>          INFO is INTEGER
                    186: *>          = 0: successful exit
                    187: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
                    188: *>          > 0: if INFO = i, and i is
                    189: *>             <= N: the QR algorithm failed to compute all the
                    190: *>                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
                    191: *>                   contain those eigenvalues which have converged; if
                    192: *>                   JOBVS = 'V', VS contains the matrix which reduces A
                    193: *>                   to its partially converged Schur form.
                    194: *>             = N+1: the eigenvalues could not be reordered because some
                    195: *>                   eigenvalues were too close to separate (the problem
                    196: *>                   is very ill-conditioned);
                    197: *>             = N+2: after reordering, roundoff changed values of some
                    198: *>                   complex eigenvalues so that leading eigenvalues in
                    199: *>                   the Schur form no longer satisfy SELECT=.TRUE.  This
                    200: *>                   could also be caused by underflow due to scaling.
                    201: *> \endverbatim
                    202: *
                    203: *  Authors:
                    204: *  ========
                    205: *
                    206: *> \author Univ. of Tennessee 
                    207: *> \author Univ. of California Berkeley 
                    208: *> \author Univ. of Colorado Denver 
                    209: *> \author NAG Ltd. 
                    210: *
                    211: *> \date November 2011
                    212: *
                    213: *> \ingroup doubleGEeigen
                    214: *
                    215: *  =====================================================================
1.1       bertrand  216:       SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
                    217:      $                  VS, LDVS, WORK, LWORK, BWORK, INFO )
                    218: *
1.8       bertrand  219: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  220: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    221: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  222: *     November 2011
1.1       bertrand  223: *
                    224: *     .. Scalar Arguments ..
                    225:       CHARACTER          JOBVS, SORT
                    226:       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
                    227: *     ..
                    228: *     .. Array Arguments ..
                    229:       LOGICAL            BWORK( * )
                    230:       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
                    231:      $                   WR( * )
                    232: *     ..
                    233: *     .. Function Arguments ..
                    234:       LOGICAL            SELECT
                    235:       EXTERNAL           SELECT
                    236: *     ..
                    237: *
                    238: *  =====================================================================
                    239: *
                    240: *     .. Parameters ..
                    241:       DOUBLE PRECISION   ZERO, ONE
                    242:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    243: *     ..
                    244: *     .. Local Scalars ..
                    245:       LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTST,
                    246:      $                   WANTVS
                    247:       INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
                    248:      $                   IHI, ILO, INXT, IP, ITAU, IWRK, MAXWRK, MINWRK
                    249:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
                    250: *     ..
                    251: *     .. Local Arrays ..
                    252:       INTEGER            IDUM( 1 )
                    253:       DOUBLE PRECISION   DUM( 1 )
                    254: *     ..
                    255: *     .. External Subroutines ..
                    256:       EXTERNAL           DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
                    257:      $                   DLABAD, DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
                    258: *     ..
                    259: *     .. External Functions ..
                    260:       LOGICAL            LSAME
                    261:       INTEGER            ILAENV
                    262:       DOUBLE PRECISION   DLAMCH, DLANGE
                    263:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
                    264: *     ..
                    265: *     .. Intrinsic Functions ..
                    266:       INTRINSIC          MAX, SQRT
                    267: *     ..
                    268: *     .. Executable Statements ..
                    269: *
                    270: *     Test the input arguments
                    271: *
                    272:       INFO = 0
                    273:       LQUERY = ( LWORK.EQ.-1 )
                    274:       WANTVS = LSAME( JOBVS, 'V' )
                    275:       WANTST = LSAME( SORT, 'S' )
                    276:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
                    277:          INFO = -1
                    278:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    279:          INFO = -2
                    280:       ELSE IF( N.LT.0 ) THEN
                    281:          INFO = -4
                    282:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    283:          INFO = -6
                    284:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
                    285:          INFO = -11
                    286:       END IF
                    287: *
                    288: *     Compute workspace
                    289: *      (Note: Comments in the code beginning "Workspace:" describe the
                    290: *       minimal amount of workspace needed at that point in the code,
                    291: *       as well as the preferred amount for good performance.
                    292: *       NB refers to the optimal block size for the immediately
                    293: *       following subroutine, as returned by ILAENV.
                    294: *       HSWORK refers to the workspace preferred by DHSEQR, as
                    295: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
                    296: *       the worst case.)
                    297: *
                    298:       IF( INFO.EQ.0 ) THEN
                    299:          IF( N.EQ.0 ) THEN
                    300:             MINWRK = 1
                    301:             MAXWRK = 1
                    302:          ELSE
                    303:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
                    304:             MINWRK = 3*N
                    305: *
                    306:             CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
                    307:      $             WORK, -1, IEVAL )
                    308:             HSWORK = WORK( 1 )
                    309: *
                    310:             IF( .NOT.WANTVS ) THEN
                    311:                MAXWRK = MAX( MAXWRK, N + HSWORK )
                    312:             ELSE
                    313:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
                    314:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
                    315:                MAXWRK = MAX( MAXWRK, N + HSWORK )
                    316:             END IF
                    317:          END IF
                    318:          WORK( 1 ) = MAXWRK
                    319: *
                    320:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    321:             INFO = -13
                    322:          END IF
                    323:       END IF
                    324: *
                    325:       IF( INFO.NE.0 ) THEN
                    326:          CALL XERBLA( 'DGEES ', -INFO )
                    327:          RETURN
                    328:       ELSE IF( LQUERY ) THEN
                    329:          RETURN
                    330:       END IF
                    331: *
                    332: *     Quick return if possible
                    333: *
                    334:       IF( N.EQ.0 ) THEN
                    335:          SDIM = 0
                    336:          RETURN
                    337:       END IF
                    338: *
                    339: *     Get machine constants
                    340: *
                    341:       EPS = DLAMCH( 'P' )
                    342:       SMLNUM = DLAMCH( 'S' )
                    343:       BIGNUM = ONE / SMLNUM
                    344:       CALL DLABAD( SMLNUM, BIGNUM )
                    345:       SMLNUM = SQRT( SMLNUM ) / EPS
                    346:       BIGNUM = ONE / SMLNUM
                    347: *
                    348: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    349: *
                    350:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
                    351:       SCALEA = .FALSE.
                    352:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    353:          SCALEA = .TRUE.
                    354:          CSCALE = SMLNUM
                    355:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    356:          SCALEA = .TRUE.
                    357:          CSCALE = BIGNUM
                    358:       END IF
                    359:       IF( SCALEA )
                    360:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
                    361: *
                    362: *     Permute the matrix to make it more nearly triangular
                    363: *     (Workspace: need N)
                    364: *
                    365:       IBAL = 1
                    366:       CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
                    367: *
                    368: *     Reduce to upper Hessenberg form
                    369: *     (Workspace: need 3*N, prefer 2*N+N*NB)
                    370: *
                    371:       ITAU = N + IBAL
                    372:       IWRK = N + ITAU
                    373:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
                    374:      $             LWORK-IWRK+1, IERR )
                    375: *
                    376:       IF( WANTVS ) THEN
                    377: *
                    378: *        Copy Householder vectors to VS
                    379: *
                    380:          CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
                    381: *
                    382: *        Generate orthogonal matrix in VS
                    383: *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
                    384: *
                    385:          CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
                    386:      $                LWORK-IWRK+1, IERR )
                    387:       END IF
                    388: *
                    389:       SDIM = 0
                    390: *
                    391: *     Perform QR iteration, accumulating Schur vectors in VS if desired
                    392: *     (Workspace: need N+1, prefer N+HSWORK (see comments) )
                    393: *
                    394:       IWRK = ITAU
                    395:       CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
                    396:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
                    397:       IF( IEVAL.GT.0 )
                    398:      $   INFO = IEVAL
                    399: *
                    400: *     Sort eigenvalues if desired
                    401: *
                    402:       IF( WANTST .AND. INFO.EQ.0 ) THEN
                    403:          IF( SCALEA ) THEN
                    404:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
                    405:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
                    406:          END IF
                    407:          DO 10 I = 1, N
                    408:             BWORK( I ) = SELECT( WR( I ), WI( I ) )
                    409:    10    CONTINUE
                    410: *
                    411: *        Reorder eigenvalues and transform Schur vectors
                    412: *        (Workspace: none needed)
                    413: *
                    414:          CALL DTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
                    415:      $                SDIM, S, SEP, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
                    416:      $                ICOND )
                    417:          IF( ICOND.GT.0 )
                    418:      $      INFO = N + ICOND
                    419:       END IF
                    420: *
                    421:       IF( WANTVS ) THEN
                    422: *
                    423: *        Undo balancing
                    424: *        (Workspace: need N)
                    425: *
                    426:          CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
                    427:      $                IERR )
                    428:       END IF
                    429: *
                    430:       IF( SCALEA ) THEN
                    431: *
                    432: *        Undo scaling for the Schur form of A
                    433: *
                    434:          CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
                    435:          CALL DCOPY( N, A, LDA+1, WR, 1 )
                    436:          IF( CSCALE.EQ.SMLNUM ) THEN
                    437: *
                    438: *           If scaling back towards underflow, adjust WI if an
                    439: *           offdiagonal element of a 2-by-2 block in the Schur form
                    440: *           underflows.
                    441: *
                    442:             IF( IEVAL.GT.0 ) THEN
                    443:                I1 = IEVAL + 1
                    444:                I2 = IHI - 1
                    445:                CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI,
                    446:      $                      MAX( ILO-1, 1 ), IERR )
                    447:             ELSE IF( WANTST ) THEN
                    448:                I1 = 1
                    449:                I2 = N - 1
                    450:             ELSE
                    451:                I1 = ILO
                    452:                I2 = IHI - 1
                    453:             END IF
                    454:             INXT = I1 - 1
                    455:             DO 20 I = I1, I2
                    456:                IF( I.LT.INXT )
                    457:      $            GO TO 20
                    458:                IF( WI( I ).EQ.ZERO ) THEN
                    459:                   INXT = I + 1
                    460:                ELSE
                    461:                   IF( A( I+1, I ).EQ.ZERO ) THEN
                    462:                      WI( I ) = ZERO
                    463:                      WI( I+1 ) = ZERO
                    464:                   ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
                    465:      $                     ZERO ) THEN
                    466:                      WI( I ) = ZERO
                    467:                      WI( I+1 ) = ZERO
                    468:                      IF( I.GT.1 )
                    469:      $                  CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
                    470:                      IF( N.GT.I+1 )
                    471:      $                  CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
                    472:      $                              A( I+1, I+2 ), LDA )
                    473:                      IF( WANTVS ) THEN
                    474:                         CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
                    475:                      END IF
                    476:                      A( I, I+1 ) = A( I+1, I )
                    477:                      A( I+1, I ) = ZERO
                    478:                   END IF
                    479:                   INXT = I + 2
                    480:                END IF
                    481:    20       CONTINUE
                    482:          END IF
                    483: *
                    484: *        Undo scaling for the imaginary part of the eigenvalues
                    485: *
                    486:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
                    487:      $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
                    488:       END IF
                    489: *
                    490:       IF( WANTST .AND. INFO.EQ.0 ) THEN
                    491: *
                    492: *        Check if reordering successful
                    493: *
                    494:          LASTSL = .TRUE.
                    495:          LST2SL = .TRUE.
                    496:          SDIM = 0
                    497:          IP = 0
                    498:          DO 30 I = 1, N
                    499:             CURSL = SELECT( WR( I ), WI( I ) )
                    500:             IF( WI( I ).EQ.ZERO ) THEN
                    501:                IF( CURSL )
                    502:      $            SDIM = SDIM + 1
                    503:                IP = 0
                    504:                IF( CURSL .AND. .NOT.LASTSL )
                    505:      $            INFO = N + 2
                    506:             ELSE
                    507:                IF( IP.EQ.1 ) THEN
                    508: *
                    509: *                 Last eigenvalue of conjugate pair
                    510: *
                    511:                   CURSL = CURSL .OR. LASTSL
                    512:                   LASTSL = CURSL
                    513:                   IF( CURSL )
                    514:      $               SDIM = SDIM + 2
                    515:                   IP = -1
                    516:                   IF( CURSL .AND. .NOT.LST2SL )
                    517:      $               INFO = N + 2
                    518:                ELSE
                    519: *
                    520: *                 First eigenvalue of conjugate pair
                    521: *
                    522:                   IP = 1
                    523:                END IF
                    524:             END IF
                    525:             LST2SL = LASTSL
                    526:             LASTSL = CURSL
                    527:    30    CONTINUE
                    528:       END IF
                    529: *
                    530:       WORK( 1 ) = MAXWRK
                    531:       RETURN
                    532: *
                    533: *     End of DGEES
                    534: *
                    535:       END

CVSweb interface <joel.bertrand@systella.fr>