File:  [local] / rpl / lapack / lapack / dgbrfs.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:47 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DGBRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGBRFS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbrfs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbrfs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbrfs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
   22: *                          IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
   23: *                          INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          TRANS
   27: *       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            IPIV( * ), IWORK( * )
   31: *       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   32: *      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> DGBRFS improves the computed solution to a system of linear
   42: *> equations when the coefficient matrix is banded, and provides
   43: *> error bounds and backward error estimates for the solution.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] TRANS
   50: *> \verbatim
   51: *>          TRANS is CHARACTER*1
   52: *>          Specifies the form of the system of equations:
   53: *>          = 'N':  A * X = B     (No transpose)
   54: *>          = 'T':  A**T * X = B  (Transpose)
   55: *>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] KL
   65: *> \verbatim
   66: *>          KL is INTEGER
   67: *>          The number of subdiagonals within the band of A.  KL >= 0.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] KU
   71: *> \verbatim
   72: *>          KU is INTEGER
   73: *>          The number of superdiagonals within the band of A.  KU >= 0.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] NRHS
   77: *> \verbatim
   78: *>          NRHS is INTEGER
   79: *>          The number of right hand sides, i.e., the number of columns
   80: *>          of the matrices B and X.  NRHS >= 0.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] AB
   84: *> \verbatim
   85: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
   86: *>          The original band matrix A, stored in rows 1 to KL+KU+1.
   87: *>          The j-th column of A is stored in the j-th column of the
   88: *>          array AB as follows:
   89: *>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
   90: *> \endverbatim
   91: *>
   92: *> \param[in] LDAB
   93: *> \verbatim
   94: *>          LDAB is INTEGER
   95: *>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] AFB
   99: *> \verbatim
  100: *>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
  101: *>          Details of the LU factorization of the band matrix A, as
  102: *>          computed by DGBTRF.  U is stored as an upper triangular band
  103: *>          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
  104: *>          the multipliers used during the factorization are stored in
  105: *>          rows KL+KU+2 to 2*KL+KU+1.
  106: *> \endverbatim
  107: *>
  108: *> \param[in] LDAFB
  109: *> \verbatim
  110: *>          LDAFB is INTEGER
  111: *>          The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] IPIV
  115: *> \verbatim
  116: *>          IPIV is INTEGER array, dimension (N)
  117: *>          The pivot indices from DGBTRF; for 1<=i<=N, row i of the
  118: *>          matrix was interchanged with row IPIV(i).
  119: *> \endverbatim
  120: *>
  121: *> \param[in] B
  122: *> \verbatim
  123: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  124: *>          The right hand side matrix B.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] LDB
  128: *> \verbatim
  129: *>          LDB is INTEGER
  130: *>          The leading dimension of the array B.  LDB >= max(1,N).
  131: *> \endverbatim
  132: *>
  133: *> \param[in,out] X
  134: *> \verbatim
  135: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  136: *>          On entry, the solution matrix X, as computed by DGBTRS.
  137: *>          On exit, the improved solution matrix X.
  138: *> \endverbatim
  139: *>
  140: *> \param[in] LDX
  141: *> \verbatim
  142: *>          LDX is INTEGER
  143: *>          The leading dimension of the array X.  LDX >= max(1,N).
  144: *> \endverbatim
  145: *>
  146: *> \param[out] FERR
  147: *> \verbatim
  148: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  149: *>          The estimated forward error bound for each solution vector
  150: *>          X(j) (the j-th column of the solution matrix X).
  151: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  152: *>          is an estimated upper bound for the magnitude of the largest
  153: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  154: *>          largest element in X(j).  The estimate is as reliable as
  155: *>          the estimate for RCOND, and is almost always a slight
  156: *>          overestimate of the true error.
  157: *> \endverbatim
  158: *>
  159: *> \param[out] BERR
  160: *> \verbatim
  161: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  162: *>          The componentwise relative backward error of each solution
  163: *>          vector X(j) (i.e., the smallest relative change in
  164: *>          any element of A or B that makes X(j) an exact solution).
  165: *> \endverbatim
  166: *>
  167: *> \param[out] WORK
  168: *> \verbatim
  169: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
  170: *> \endverbatim
  171: *>
  172: *> \param[out] IWORK
  173: *> \verbatim
  174: *>          IWORK is INTEGER array, dimension (N)
  175: *> \endverbatim
  176: *>
  177: *> \param[out] INFO
  178: *> \verbatim
  179: *>          INFO is INTEGER
  180: *>          = 0:  successful exit
  181: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  182: *> \endverbatim
  183: *
  184: *> \par Internal Parameters:
  185: *  =========================
  186: *>
  187: *> \verbatim
  188: *>  ITMAX is the maximum number of steps of iterative refinement.
  189: *> \endverbatim
  190: *
  191: *  Authors:
  192: *  ========
  193: *
  194: *> \author Univ. of Tennessee
  195: *> \author Univ. of California Berkeley
  196: *> \author Univ. of Colorado Denver
  197: *> \author NAG Ltd.
  198: *
  199: *> \ingroup doubleGBcomputational
  200: *
  201: *  =====================================================================
  202:       SUBROUTINE DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
  203:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
  204:      $                   INFO )
  205: *
  206: *  -- LAPACK computational routine --
  207: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  208: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  209: *
  210: *     .. Scalar Arguments ..
  211:       CHARACTER          TRANS
  212:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
  213: *     ..
  214: *     .. Array Arguments ..
  215:       INTEGER            IPIV( * ), IWORK( * )
  216:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  217:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  218: *     ..
  219: *
  220: *  =====================================================================
  221: *
  222: *     .. Parameters ..
  223:       INTEGER            ITMAX
  224:       PARAMETER          ( ITMAX = 5 )
  225:       DOUBLE PRECISION   ZERO
  226:       PARAMETER          ( ZERO = 0.0D+0 )
  227:       DOUBLE PRECISION   ONE
  228:       PARAMETER          ( ONE = 1.0D+0 )
  229:       DOUBLE PRECISION   TWO
  230:       PARAMETER          ( TWO = 2.0D+0 )
  231:       DOUBLE PRECISION   THREE
  232:       PARAMETER          ( THREE = 3.0D+0 )
  233: *     ..
  234: *     .. Local Scalars ..
  235:       LOGICAL            NOTRAN
  236:       CHARACTER          TRANST
  237:       INTEGER            COUNT, I, J, K, KASE, KK, NZ
  238:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  239: *     ..
  240: *     .. Local Arrays ..
  241:       INTEGER            ISAVE( 3 )
  242: *     ..
  243: *     .. External Subroutines ..
  244:       EXTERNAL           DAXPY, DCOPY, DGBMV, DGBTRS, DLACN2, XERBLA
  245: *     ..
  246: *     .. Intrinsic Functions ..
  247:       INTRINSIC          ABS, MAX, MIN
  248: *     ..
  249: *     .. External Functions ..
  250:       LOGICAL            LSAME
  251:       DOUBLE PRECISION   DLAMCH
  252:       EXTERNAL           LSAME, DLAMCH
  253: *     ..
  254: *     .. Executable Statements ..
  255: *
  256: *     Test the input parameters.
  257: *
  258:       INFO = 0
  259:       NOTRAN = LSAME( TRANS, 'N' )
  260:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  261:      $    LSAME( TRANS, 'C' ) ) THEN
  262:          INFO = -1
  263:       ELSE IF( N.LT.0 ) THEN
  264:          INFO = -2
  265:       ELSE IF( KL.LT.0 ) THEN
  266:          INFO = -3
  267:       ELSE IF( KU.LT.0 ) THEN
  268:          INFO = -4
  269:       ELSE IF( NRHS.LT.0 ) THEN
  270:          INFO = -5
  271:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  272:          INFO = -7
  273:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  274:          INFO = -9
  275:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  276:          INFO = -12
  277:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  278:          INFO = -14
  279:       END IF
  280:       IF( INFO.NE.0 ) THEN
  281:          CALL XERBLA( 'DGBRFS', -INFO )
  282:          RETURN
  283:       END IF
  284: *
  285: *     Quick return if possible
  286: *
  287:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  288:          DO 10 J = 1, NRHS
  289:             FERR( J ) = ZERO
  290:             BERR( J ) = ZERO
  291:    10    CONTINUE
  292:          RETURN
  293:       END IF
  294: *
  295:       IF( NOTRAN ) THEN
  296:          TRANST = 'T'
  297:       ELSE
  298:          TRANST = 'N'
  299:       END IF
  300: *
  301: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  302: *
  303:       NZ = MIN( KL+KU+2, N+1 )
  304:       EPS = DLAMCH( 'Epsilon' )
  305:       SAFMIN = DLAMCH( 'Safe minimum' )
  306:       SAFE1 = NZ*SAFMIN
  307:       SAFE2 = SAFE1 / EPS
  308: *
  309: *     Do for each right hand side
  310: *
  311:       DO 140 J = 1, NRHS
  312: *
  313:          COUNT = 1
  314:          LSTRES = THREE
  315:    20    CONTINUE
  316: *
  317: *        Loop until stopping criterion is satisfied.
  318: *
  319: *        Compute residual R = B - op(A) * X,
  320: *        where op(A) = A, A**T, or A**H, depending on TRANS.
  321: *
  322:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  323:          CALL DGBMV( TRANS, N, N, KL, KU, -ONE, AB, LDAB, X( 1, J ), 1,
  324:      $               ONE, WORK( N+1 ), 1 )
  325: *
  326: *        Compute componentwise relative backward error from formula
  327: *
  328: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  329: *
  330: *        where abs(Z) is the componentwise absolute value of the matrix
  331: *        or vector Z.  If the i-th component of the denominator is less
  332: *        than SAFE2, then SAFE1 is added to the i-th components of the
  333: *        numerator and denominator before dividing.
  334: *
  335:          DO 30 I = 1, N
  336:             WORK( I ) = ABS( B( I, J ) )
  337:    30    CONTINUE
  338: *
  339: *        Compute abs(op(A))*abs(X) + abs(B).
  340: *
  341:          IF( NOTRAN ) THEN
  342:             DO 50 K = 1, N
  343:                KK = KU + 1 - K
  344:                XK = ABS( X( K, J ) )
  345:                DO 40 I = MAX( 1, K-KU ), MIN( N, K+KL )
  346:                   WORK( I ) = WORK( I ) + ABS( AB( KK+I, K ) )*XK
  347:    40          CONTINUE
  348:    50       CONTINUE
  349:          ELSE
  350:             DO 70 K = 1, N
  351:                S = ZERO
  352:                KK = KU + 1 - K
  353:                DO 60 I = MAX( 1, K-KU ), MIN( N, K+KL )
  354:                   S = S + ABS( AB( KK+I, K ) )*ABS( X( I, J ) )
  355:    60          CONTINUE
  356:                WORK( K ) = WORK( K ) + S
  357:    70       CONTINUE
  358:          END IF
  359:          S = ZERO
  360:          DO 80 I = 1, N
  361:             IF( WORK( I ).GT.SAFE2 ) THEN
  362:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  363:             ELSE
  364:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  365:      $             ( WORK( I )+SAFE1 ) )
  366:             END IF
  367:    80    CONTINUE
  368:          BERR( J ) = S
  369: *
  370: *        Test stopping criterion. Continue iterating if
  371: *           1) The residual BERR(J) is larger than machine epsilon, and
  372: *           2) BERR(J) decreased by at least a factor of 2 during the
  373: *              last iteration, and
  374: *           3) At most ITMAX iterations tried.
  375: *
  376:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  377:      $       COUNT.LE.ITMAX ) THEN
  378: *
  379: *           Update solution and try again.
  380: *
  381:             CALL DGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV,
  382:      $                   WORK( N+1 ), N, INFO )
  383:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  384:             LSTRES = BERR( J )
  385:             COUNT = COUNT + 1
  386:             GO TO 20
  387:          END IF
  388: *
  389: *        Bound error from formula
  390: *
  391: *        norm(X - XTRUE) / norm(X) .le. FERR =
  392: *        norm( abs(inv(op(A)))*
  393: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  394: *
  395: *        where
  396: *          norm(Z) is the magnitude of the largest component of Z
  397: *          inv(op(A)) is the inverse of op(A)
  398: *          abs(Z) is the componentwise absolute value of the matrix or
  399: *             vector Z
  400: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  401: *          EPS is machine epsilon
  402: *
  403: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  404: *        is incremented by SAFE1 if the i-th component of
  405: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  406: *
  407: *        Use DLACN2 to estimate the infinity-norm of the matrix
  408: *           inv(op(A)) * diag(W),
  409: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  410: *
  411:          DO 90 I = 1, N
  412:             IF( WORK( I ).GT.SAFE2 ) THEN
  413:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  414:             ELSE
  415:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  416:             END IF
  417:    90    CONTINUE
  418: *
  419:          KASE = 0
  420:   100    CONTINUE
  421:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  422:      $                KASE, ISAVE )
  423:          IF( KASE.NE.0 ) THEN
  424:             IF( KASE.EQ.1 ) THEN
  425: *
  426: *              Multiply by diag(W)*inv(op(A)**T).
  427: *
  428:                CALL DGBTRS( TRANST, N, KL, KU, 1, AFB, LDAFB, IPIV,
  429:      $                      WORK( N+1 ), N, INFO )
  430:                DO 110 I = 1, N
  431:                   WORK( N+I ) = WORK( N+I )*WORK( I )
  432:   110          CONTINUE
  433:             ELSE
  434: *
  435: *              Multiply by inv(op(A))*diag(W).
  436: *
  437:                DO 120 I = 1, N
  438:                   WORK( N+I ) = WORK( N+I )*WORK( I )
  439:   120          CONTINUE
  440:                CALL DGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV,
  441:      $                      WORK( N+1 ), N, INFO )
  442:             END IF
  443:             GO TO 100
  444:          END IF
  445: *
  446: *        Normalize error.
  447: *
  448:          LSTRES = ZERO
  449:          DO 130 I = 1, N
  450:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  451:   130    CONTINUE
  452:          IF( LSTRES.NE.ZERO )
  453:      $      FERR( J ) = FERR( J ) / LSTRES
  454: *
  455:   140 CONTINUE
  456: *
  457:       RETURN
  458: *
  459: *     End of DGBRFS
  460: *
  461:       END

CVSweb interface <joel.bertrand@systella.fr>