Annotation of rpl/lapack/lapack/dgbrfs.f, revision 1.17

1.8       bertrand    1: *> \brief \b DGBRFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download DGBRFS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbrfs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbrfs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbrfs.f">
1.8       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
                     22: *                          IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
                     23: *                          INFO )
1.14      bertrand   24: *
1.8       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          TRANS
                     27: *       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       INTEGER            IPIV( * ), IWORK( * )
                     31: *       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     32: *      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                     33: *       ..
1.14      bertrand   34: *
1.8       bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> DGBRFS improves the computed solution to a system of linear
                     42: *> equations when the coefficient matrix is banded, and provides
                     43: *> error bounds and backward error estimates for the solution.
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] TRANS
                     50: *> \verbatim
                     51: *>          TRANS is CHARACTER*1
                     52: *>          Specifies the form of the system of equations:
                     53: *>          = 'N':  A * X = B     (No transpose)
                     54: *>          = 'T':  A**T * X = B  (Transpose)
                     55: *>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] N
                     59: *> \verbatim
                     60: *>          N is INTEGER
                     61: *>          The order of the matrix A.  N >= 0.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] KL
                     65: *> \verbatim
                     66: *>          KL is INTEGER
                     67: *>          The number of subdiagonals within the band of A.  KL >= 0.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] KU
                     71: *> \verbatim
                     72: *>          KU is INTEGER
                     73: *>          The number of superdiagonals within the band of A.  KU >= 0.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] NRHS
                     77: *> \verbatim
                     78: *>          NRHS is INTEGER
                     79: *>          The number of right hand sides, i.e., the number of columns
                     80: *>          of the matrices B and X.  NRHS >= 0.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] AB
                     84: *> \verbatim
                     85: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
                     86: *>          The original band matrix A, stored in rows 1 to KL+KU+1.
                     87: *>          The j-th column of A is stored in the j-th column of the
                     88: *>          array AB as follows:
                     89: *>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] LDAB
                     93: *> \verbatim
                     94: *>          LDAB is INTEGER
                     95: *>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] AFB
                     99: *> \verbatim
                    100: *>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
                    101: *>          Details of the LU factorization of the band matrix A, as
                    102: *>          computed by DGBTRF.  U is stored as an upper triangular band
                    103: *>          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
                    104: *>          the multipliers used during the factorization are stored in
                    105: *>          rows KL+KU+2 to 2*KL+KU+1.
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[in] LDAFB
                    109: *> \verbatim
                    110: *>          LDAFB is INTEGER
                    111: *>          The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in] IPIV
                    115: *> \verbatim
                    116: *>          IPIV is INTEGER array, dimension (N)
                    117: *>          The pivot indices from DGBTRF; for 1<=i<=N, row i of the
                    118: *>          matrix was interchanged with row IPIV(i).
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] B
                    122: *> \verbatim
                    123: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    124: *>          The right hand side matrix B.
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in] LDB
                    128: *> \verbatim
                    129: *>          LDB is INTEGER
                    130: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[in,out] X
                    134: *> \verbatim
                    135: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    136: *>          On entry, the solution matrix X, as computed by DGBTRS.
                    137: *>          On exit, the improved solution matrix X.
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in] LDX
                    141: *> \verbatim
                    142: *>          LDX is INTEGER
                    143: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[out] FERR
                    147: *> \verbatim
                    148: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    149: *>          The estimated forward error bound for each solution vector
                    150: *>          X(j) (the j-th column of the solution matrix X).
                    151: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    152: *>          is an estimated upper bound for the magnitude of the largest
                    153: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    154: *>          largest element in X(j).  The estimate is as reliable as
                    155: *>          the estimate for RCOND, and is almost always a slight
                    156: *>          overestimate of the true error.
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[out] BERR
                    160: *> \verbatim
                    161: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    162: *>          The componentwise relative backward error of each solution
                    163: *>          vector X(j) (i.e., the smallest relative change in
                    164: *>          any element of A or B that makes X(j) an exact solution).
                    165: *> \endverbatim
                    166: *>
                    167: *> \param[out] WORK
                    168: *> \verbatim
                    169: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[out] IWORK
                    173: *> \verbatim
                    174: *>          IWORK is INTEGER array, dimension (N)
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[out] INFO
                    178: *> \verbatim
                    179: *>          INFO is INTEGER
                    180: *>          = 0:  successful exit
                    181: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    182: *> \endverbatim
                    183: *
                    184: *> \par Internal Parameters:
                    185: *  =========================
                    186: *>
                    187: *> \verbatim
                    188: *>  ITMAX is the maximum number of steps of iterative refinement.
                    189: *> \endverbatim
                    190: *
                    191: *  Authors:
                    192: *  ========
                    193: *
1.14      bertrand  194: *> \author Univ. of Tennessee
                    195: *> \author Univ. of California Berkeley
                    196: *> \author Univ. of Colorado Denver
                    197: *> \author NAG Ltd.
1.8       bertrand  198: *
                    199: *> \ingroup doubleGBcomputational
                    200: *
                    201: *  =====================================================================
1.1       bertrand  202:       SUBROUTINE DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
                    203:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
                    204:      $                   INFO )
                    205: *
1.17    ! bertrand  206: *  -- LAPACK computational routine --
1.1       bertrand  207: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    208: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    209: *
                    210: *     .. Scalar Arguments ..
                    211:       CHARACTER          TRANS
                    212:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
                    213: *     ..
                    214: *     .. Array Arguments ..
                    215:       INTEGER            IPIV( * ), IWORK( * )
                    216:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    217:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                    218: *     ..
                    219: *
                    220: *  =====================================================================
                    221: *
                    222: *     .. Parameters ..
                    223:       INTEGER            ITMAX
                    224:       PARAMETER          ( ITMAX = 5 )
                    225:       DOUBLE PRECISION   ZERO
                    226:       PARAMETER          ( ZERO = 0.0D+0 )
                    227:       DOUBLE PRECISION   ONE
                    228:       PARAMETER          ( ONE = 1.0D+0 )
                    229:       DOUBLE PRECISION   TWO
                    230:       PARAMETER          ( TWO = 2.0D+0 )
                    231:       DOUBLE PRECISION   THREE
                    232:       PARAMETER          ( THREE = 3.0D+0 )
                    233: *     ..
                    234: *     .. Local Scalars ..
                    235:       LOGICAL            NOTRAN
                    236:       CHARACTER          TRANST
                    237:       INTEGER            COUNT, I, J, K, KASE, KK, NZ
                    238:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    239: *     ..
                    240: *     .. Local Arrays ..
                    241:       INTEGER            ISAVE( 3 )
                    242: *     ..
                    243: *     .. External Subroutines ..
                    244:       EXTERNAL           DAXPY, DCOPY, DGBMV, DGBTRS, DLACN2, XERBLA
                    245: *     ..
                    246: *     .. Intrinsic Functions ..
                    247:       INTRINSIC          ABS, MAX, MIN
                    248: *     ..
                    249: *     .. External Functions ..
                    250:       LOGICAL            LSAME
                    251:       DOUBLE PRECISION   DLAMCH
                    252:       EXTERNAL           LSAME, DLAMCH
                    253: *     ..
                    254: *     .. Executable Statements ..
                    255: *
                    256: *     Test the input parameters.
                    257: *
                    258:       INFO = 0
                    259:       NOTRAN = LSAME( TRANS, 'N' )
                    260:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    261:      $    LSAME( TRANS, 'C' ) ) THEN
                    262:          INFO = -1
                    263:       ELSE IF( N.LT.0 ) THEN
                    264:          INFO = -2
                    265:       ELSE IF( KL.LT.0 ) THEN
                    266:          INFO = -3
                    267:       ELSE IF( KU.LT.0 ) THEN
                    268:          INFO = -4
                    269:       ELSE IF( NRHS.LT.0 ) THEN
                    270:          INFO = -5
                    271:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
                    272:          INFO = -7
                    273:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
                    274:          INFO = -9
                    275:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    276:          INFO = -12
                    277:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    278:          INFO = -14
                    279:       END IF
                    280:       IF( INFO.NE.0 ) THEN
                    281:          CALL XERBLA( 'DGBRFS', -INFO )
                    282:          RETURN
                    283:       END IF
                    284: *
                    285: *     Quick return if possible
                    286: *
                    287:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    288:          DO 10 J = 1, NRHS
                    289:             FERR( J ) = ZERO
                    290:             BERR( J ) = ZERO
                    291:    10    CONTINUE
                    292:          RETURN
                    293:       END IF
                    294: *
                    295:       IF( NOTRAN ) THEN
                    296:          TRANST = 'T'
                    297:       ELSE
                    298:          TRANST = 'N'
                    299:       END IF
                    300: *
                    301: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    302: *
                    303:       NZ = MIN( KL+KU+2, N+1 )
                    304:       EPS = DLAMCH( 'Epsilon' )
                    305:       SAFMIN = DLAMCH( 'Safe minimum' )
                    306:       SAFE1 = NZ*SAFMIN
                    307:       SAFE2 = SAFE1 / EPS
                    308: *
                    309: *     Do for each right hand side
                    310: *
                    311:       DO 140 J = 1, NRHS
                    312: *
                    313:          COUNT = 1
                    314:          LSTRES = THREE
                    315:    20    CONTINUE
                    316: *
                    317: *        Loop until stopping criterion is satisfied.
                    318: *
                    319: *        Compute residual R = B - op(A) * X,
                    320: *        where op(A) = A, A**T, or A**H, depending on TRANS.
                    321: *
                    322:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
                    323:          CALL DGBMV( TRANS, N, N, KL, KU, -ONE, AB, LDAB, X( 1, J ), 1,
                    324:      $               ONE, WORK( N+1 ), 1 )
                    325: *
                    326: *        Compute componentwise relative backward error from formula
                    327: *
                    328: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
                    329: *
                    330: *        where abs(Z) is the componentwise absolute value of the matrix
                    331: *        or vector Z.  If the i-th component of the denominator is less
                    332: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    333: *        numerator and denominator before dividing.
                    334: *
                    335:          DO 30 I = 1, N
                    336:             WORK( I ) = ABS( B( I, J ) )
                    337:    30    CONTINUE
                    338: *
                    339: *        Compute abs(op(A))*abs(X) + abs(B).
                    340: *
                    341:          IF( NOTRAN ) THEN
                    342:             DO 50 K = 1, N
                    343:                KK = KU + 1 - K
                    344:                XK = ABS( X( K, J ) )
                    345:                DO 40 I = MAX( 1, K-KU ), MIN( N, K+KL )
                    346:                   WORK( I ) = WORK( I ) + ABS( AB( KK+I, K ) )*XK
                    347:    40          CONTINUE
                    348:    50       CONTINUE
                    349:          ELSE
                    350:             DO 70 K = 1, N
                    351:                S = ZERO
                    352:                KK = KU + 1 - K
                    353:                DO 60 I = MAX( 1, K-KU ), MIN( N, K+KL )
                    354:                   S = S + ABS( AB( KK+I, K ) )*ABS( X( I, J ) )
                    355:    60          CONTINUE
                    356:                WORK( K ) = WORK( K ) + S
                    357:    70       CONTINUE
                    358:          END IF
                    359:          S = ZERO
                    360:          DO 80 I = 1, N
                    361:             IF( WORK( I ).GT.SAFE2 ) THEN
                    362:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
                    363:             ELSE
                    364:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
                    365:      $             ( WORK( I )+SAFE1 ) )
                    366:             END IF
                    367:    80    CONTINUE
                    368:          BERR( J ) = S
                    369: *
                    370: *        Test stopping criterion. Continue iterating if
                    371: *           1) The residual BERR(J) is larger than machine epsilon, and
                    372: *           2) BERR(J) decreased by at least a factor of 2 during the
                    373: *              last iteration, and
                    374: *           3) At most ITMAX iterations tried.
                    375: *
                    376:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    377:      $       COUNT.LE.ITMAX ) THEN
                    378: *
                    379: *           Update solution and try again.
                    380: *
                    381:             CALL DGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV,
                    382:      $                   WORK( N+1 ), N, INFO )
                    383:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
                    384:             LSTRES = BERR( J )
                    385:             COUNT = COUNT + 1
                    386:             GO TO 20
                    387:          END IF
                    388: *
                    389: *        Bound error from formula
                    390: *
                    391: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    392: *        norm( abs(inv(op(A)))*
                    393: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
                    394: *
                    395: *        where
                    396: *          norm(Z) is the magnitude of the largest component of Z
                    397: *          inv(op(A)) is the inverse of op(A)
                    398: *          abs(Z) is the componentwise absolute value of the matrix or
                    399: *             vector Z
                    400: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    401: *          EPS is machine epsilon
                    402: *
                    403: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
                    404: *        is incremented by SAFE1 if the i-th component of
                    405: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
                    406: *
                    407: *        Use DLACN2 to estimate the infinity-norm of the matrix
                    408: *           inv(op(A)) * diag(W),
                    409: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
                    410: *
                    411:          DO 90 I = 1, N
                    412:             IF( WORK( I ).GT.SAFE2 ) THEN
                    413:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
                    414:             ELSE
                    415:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
                    416:             END IF
                    417:    90    CONTINUE
                    418: *
                    419:          KASE = 0
                    420:   100    CONTINUE
                    421:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
                    422:      $                KASE, ISAVE )
                    423:          IF( KASE.NE.0 ) THEN
                    424:             IF( KASE.EQ.1 ) THEN
                    425: *
                    426: *              Multiply by diag(W)*inv(op(A)**T).
                    427: *
                    428:                CALL DGBTRS( TRANST, N, KL, KU, 1, AFB, LDAFB, IPIV,
                    429:      $                      WORK( N+1 ), N, INFO )
                    430:                DO 110 I = 1, N
                    431:                   WORK( N+I ) = WORK( N+I )*WORK( I )
                    432:   110          CONTINUE
                    433:             ELSE
                    434: *
                    435: *              Multiply by inv(op(A))*diag(W).
                    436: *
                    437:                DO 120 I = 1, N
                    438:                   WORK( N+I ) = WORK( N+I )*WORK( I )
                    439:   120          CONTINUE
                    440:                CALL DGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV,
                    441:      $                      WORK( N+1 ), N, INFO )
                    442:             END IF
                    443:             GO TO 100
                    444:          END IF
                    445: *
                    446: *        Normalize error.
                    447: *
                    448:          LSTRES = ZERO
                    449:          DO 130 I = 1, N
                    450:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
                    451:   130    CONTINUE
                    452:          IF( LSTRES.NE.ZERO )
                    453:      $      FERR( J ) = FERR( J ) / LSTRES
                    454: *
                    455:   140 CONTINUE
                    456: *
                    457:       RETURN
                    458: *
                    459: *     End of DGBRFS
                    460: *
                    461:       END

CVSweb interface <joel.bertrand@systella.fr>