File:  [local] / rpl / lapack / blas / dtbsv.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
    2: *     .. Scalar Arguments ..
    3:       INTEGER INCX,K,LDA,N
    4:       CHARACTER DIAG,TRANS,UPLO
    5: *     ..
    6: *     .. Array Arguments ..
    7:       DOUBLE PRECISION A(LDA,*),X(*)
    8: *     ..
    9: *
   10: *  Purpose
   11: *  =======
   12: *
   13: *  DTBSV  solves one of the systems of equations
   14: *
   15: *     A*x = b,   or   A'*x = b,
   16: *
   17: *  where b and x are n element vectors and A is an n by n unit, or
   18: *  non-unit, upper or lower triangular band matrix, with ( k + 1 )
   19: *  diagonals.
   20: *
   21: *  No test for singularity or near-singularity is included in this
   22: *  routine. Such tests must be performed before calling this routine.
   23: *
   24: *  Arguments
   25: *  ==========
   26: *
   27: *  UPLO   - CHARACTER*1.
   28: *           On entry, UPLO specifies whether the matrix is an upper or
   29: *           lower triangular matrix as follows:
   30: *
   31: *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
   32: *
   33: *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
   34: *
   35: *           Unchanged on exit.
   36: *
   37: *  TRANS  - CHARACTER*1.
   38: *           On entry, TRANS specifies the equations to be solved as
   39: *           follows:
   40: *
   41: *              TRANS = 'N' or 'n'   A*x = b.
   42: *
   43: *              TRANS = 'T' or 't'   A'*x = b.
   44: *
   45: *              TRANS = 'C' or 'c'   A'*x = b.
   46: *
   47: *           Unchanged on exit.
   48: *
   49: *  DIAG   - CHARACTER*1.
   50: *           On entry, DIAG specifies whether or not A is unit
   51: *           triangular as follows:
   52: *
   53: *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
   54: *
   55: *              DIAG = 'N' or 'n'   A is not assumed to be unit
   56: *                                  triangular.
   57: *
   58: *           Unchanged on exit.
   59: *
   60: *  N      - INTEGER.
   61: *           On entry, N specifies the order of the matrix A.
   62: *           N must be at least zero.
   63: *           Unchanged on exit.
   64: *
   65: *  K      - INTEGER.
   66: *           On entry with UPLO = 'U' or 'u', K specifies the number of
   67: *           super-diagonals of the matrix A.
   68: *           On entry with UPLO = 'L' or 'l', K specifies the number of
   69: *           sub-diagonals of the matrix A.
   70: *           K must satisfy  0 .le. K.
   71: *           Unchanged on exit.
   72: *
   73: *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
   74: *           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
   75: *           by n part of the array A must contain the upper triangular
   76: *           band part of the matrix of coefficients, supplied column by
   77: *           column, with the leading diagonal of the matrix in row
   78: *           ( k + 1 ) of the array, the first super-diagonal starting at
   79: *           position 2 in row k, and so on. The top left k by k triangle
   80: *           of the array A is not referenced.
   81: *           The following program segment will transfer an upper
   82: *           triangular band matrix from conventional full matrix storage
   83: *           to band storage:
   84: *
   85: *                 DO 20, J = 1, N
   86: *                    M = K + 1 - J
   87: *                    DO 10, I = MAX( 1, J - K ), J
   88: *                       A( M + I, J ) = matrix( I, J )
   89: *              10    CONTINUE
   90: *              20 CONTINUE
   91: *
   92: *           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
   93: *           by n part of the array A must contain the lower triangular
   94: *           band part of the matrix of coefficients, supplied column by
   95: *           column, with the leading diagonal of the matrix in row 1 of
   96: *           the array, the first sub-diagonal starting at position 1 in
   97: *           row 2, and so on. The bottom right k by k triangle of the
   98: *           array A is not referenced.
   99: *           The following program segment will transfer a lower
  100: *           triangular band matrix from conventional full matrix storage
  101: *           to band storage:
  102: *
  103: *                 DO 20, J = 1, N
  104: *                    M = 1 - J
  105: *                    DO 10, I = J, MIN( N, J + K )
  106: *                       A( M + I, J ) = matrix( I, J )
  107: *              10    CONTINUE
  108: *              20 CONTINUE
  109: *
  110: *           Note that when DIAG = 'U' or 'u' the elements of the array A
  111: *           corresponding to the diagonal elements of the matrix are not
  112: *           referenced, but are assumed to be unity.
  113: *           Unchanged on exit.
  114: *
  115: *  LDA    - INTEGER.
  116: *           On entry, LDA specifies the first dimension of A as declared
  117: *           in the calling (sub) program. LDA must be at least
  118: *           ( k + 1 ).
  119: *           Unchanged on exit.
  120: *
  121: *  X      - DOUBLE PRECISION array of dimension at least
  122: *           ( 1 + ( n - 1 )*abs( INCX ) ).
  123: *           Before entry, the incremented array X must contain the n
  124: *           element right-hand side vector b. On exit, X is overwritten
  125: *           with the solution vector x.
  126: *
  127: *  INCX   - INTEGER.
  128: *           On entry, INCX specifies the increment for the elements of
  129: *           X. INCX must not be zero.
  130: *           Unchanged on exit.
  131: *
  132: *  Further Details
  133: *  ===============
  134: *
  135: *  Level 2 Blas routine.
  136: *
  137: *  -- Written on 22-October-1986.
  138: *     Jack Dongarra, Argonne National Lab.
  139: *     Jeremy Du Croz, Nag Central Office.
  140: *     Sven Hammarling, Nag Central Office.
  141: *     Richard Hanson, Sandia National Labs.
  142: *
  143: *  =====================================================================
  144: *
  145: *     .. Parameters ..
  146:       DOUBLE PRECISION ZERO
  147:       PARAMETER (ZERO=0.0D+0)
  148: *     ..
  149: *     .. Local Scalars ..
  150:       DOUBLE PRECISION TEMP
  151:       INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
  152:       LOGICAL NOUNIT
  153: *     ..
  154: *     .. External Functions ..
  155:       LOGICAL LSAME
  156:       EXTERNAL LSAME
  157: *     ..
  158: *     .. External Subroutines ..
  159:       EXTERNAL XERBLA
  160: *     ..
  161: *     .. Intrinsic Functions ..
  162:       INTRINSIC MAX,MIN
  163: *     ..
  164: *
  165: *     Test the input parameters.
  166: *
  167:       INFO = 0
  168:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  169:           INFO = 1
  170:       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  171:      +         .NOT.LSAME(TRANS,'C')) THEN
  172:           INFO = 2
  173:       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  174:           INFO = 3
  175:       ELSE IF (N.LT.0) THEN
  176:           INFO = 4
  177:       ELSE IF (K.LT.0) THEN
  178:           INFO = 5
  179:       ELSE IF (LDA.LT. (K+1)) THEN
  180:           INFO = 7
  181:       ELSE IF (INCX.EQ.0) THEN
  182:           INFO = 9
  183:       END IF
  184:       IF (INFO.NE.0) THEN
  185:           CALL XERBLA('DTBSV ',INFO)
  186:           RETURN
  187:       END IF
  188: *
  189: *     Quick return if possible.
  190: *
  191:       IF (N.EQ.0) RETURN
  192: *
  193:       NOUNIT = LSAME(DIAG,'N')
  194: *
  195: *     Set up the start point in X if the increment is not unity. This
  196: *     will be  ( N - 1 )*INCX  too small for descending loops.
  197: *
  198:       IF (INCX.LE.0) THEN
  199:           KX = 1 - (N-1)*INCX
  200:       ELSE IF (INCX.NE.1) THEN
  201:           KX = 1
  202:       END IF
  203: *
  204: *     Start the operations. In this version the elements of A are
  205: *     accessed by sequentially with one pass through A.
  206: *
  207:       IF (LSAME(TRANS,'N')) THEN
  208: *
  209: *        Form  x := inv( A )*x.
  210: *
  211:           IF (LSAME(UPLO,'U')) THEN
  212:               KPLUS1 = K + 1
  213:               IF (INCX.EQ.1) THEN
  214:                   DO 20 J = N,1,-1
  215:                       IF (X(J).NE.ZERO) THEN
  216:                           L = KPLUS1 - J
  217:                           IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
  218:                           TEMP = X(J)
  219:                           DO 10 I = J - 1,MAX(1,J-K),-1
  220:                               X(I) = X(I) - TEMP*A(L+I,J)
  221:    10                     CONTINUE
  222:                       END IF
  223:    20             CONTINUE
  224:               ELSE
  225:                   KX = KX + (N-1)*INCX
  226:                   JX = KX
  227:                   DO 40 J = N,1,-1
  228:                       KX = KX - INCX
  229:                       IF (X(JX).NE.ZERO) THEN
  230:                           IX = KX
  231:                           L = KPLUS1 - J
  232:                           IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
  233:                           TEMP = X(JX)
  234:                           DO 30 I = J - 1,MAX(1,J-K),-1
  235:                               X(IX) = X(IX) - TEMP*A(L+I,J)
  236:                               IX = IX - INCX
  237:    30                     CONTINUE
  238:                       END IF
  239:                       JX = JX - INCX
  240:    40             CONTINUE
  241:               END IF
  242:           ELSE
  243:               IF (INCX.EQ.1) THEN
  244:                   DO 60 J = 1,N
  245:                       IF (X(J).NE.ZERO) THEN
  246:                           L = 1 - J
  247:                           IF (NOUNIT) X(J) = X(J)/A(1,J)
  248:                           TEMP = X(J)
  249:                           DO 50 I = J + 1,MIN(N,J+K)
  250:                               X(I) = X(I) - TEMP*A(L+I,J)
  251:    50                     CONTINUE
  252:                       END IF
  253:    60             CONTINUE
  254:               ELSE
  255:                   JX = KX
  256:                   DO 80 J = 1,N
  257:                       KX = KX + INCX
  258:                       IF (X(JX).NE.ZERO) THEN
  259:                           IX = KX
  260:                           L = 1 - J
  261:                           IF (NOUNIT) X(JX) = X(JX)/A(1,J)
  262:                           TEMP = X(JX)
  263:                           DO 70 I = J + 1,MIN(N,J+K)
  264:                               X(IX) = X(IX) - TEMP*A(L+I,J)
  265:                               IX = IX + INCX
  266:    70                     CONTINUE
  267:                       END IF
  268:                       JX = JX + INCX
  269:    80             CONTINUE
  270:               END IF
  271:           END IF
  272:       ELSE
  273: *
  274: *        Form  x := inv( A')*x.
  275: *
  276:           IF (LSAME(UPLO,'U')) THEN
  277:               KPLUS1 = K + 1
  278:               IF (INCX.EQ.1) THEN
  279:                   DO 100 J = 1,N
  280:                       TEMP = X(J)
  281:                       L = KPLUS1 - J
  282:                       DO 90 I = MAX(1,J-K),J - 1
  283:                           TEMP = TEMP - A(L+I,J)*X(I)
  284:    90                 CONTINUE
  285:                       IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
  286:                       X(J) = TEMP
  287:   100             CONTINUE
  288:               ELSE
  289:                   JX = KX
  290:                   DO 120 J = 1,N
  291:                       TEMP = X(JX)
  292:                       IX = KX
  293:                       L = KPLUS1 - J
  294:                       DO 110 I = MAX(1,J-K),J - 1
  295:                           TEMP = TEMP - A(L+I,J)*X(IX)
  296:                           IX = IX + INCX
  297:   110                 CONTINUE
  298:                       IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
  299:                       X(JX) = TEMP
  300:                       JX = JX + INCX
  301:                       IF (J.GT.K) KX = KX + INCX
  302:   120             CONTINUE
  303:               END IF
  304:           ELSE
  305:               IF (INCX.EQ.1) THEN
  306:                   DO 140 J = N,1,-1
  307:                       TEMP = X(J)
  308:                       L = 1 - J
  309:                       DO 130 I = MIN(N,J+K),J + 1,-1
  310:                           TEMP = TEMP - A(L+I,J)*X(I)
  311:   130                 CONTINUE
  312:                       IF (NOUNIT) TEMP = TEMP/A(1,J)
  313:                       X(J) = TEMP
  314:   140             CONTINUE
  315:               ELSE
  316:                   KX = KX + (N-1)*INCX
  317:                   JX = KX
  318:                   DO 160 J = N,1,-1
  319:                       TEMP = X(JX)
  320:                       IX = KX
  321:                       L = 1 - J
  322:                       DO 150 I = MIN(N,J+K),J + 1,-1
  323:                           TEMP = TEMP - A(L+I,J)*X(IX)
  324:                           IX = IX - INCX
  325:   150                 CONTINUE
  326:                       IF (NOUNIT) TEMP = TEMP/A(1,J)
  327:                       X(JX) = TEMP
  328:                       JX = JX - INCX
  329:                       IF ((N-J).GE.K) KX = KX - INCX
  330:   160             CONTINUE
  331:               END IF
  332:           END IF
  333:       END IF
  334: *
  335:       RETURN
  336: *
  337: *     End of DTBSV .
  338: *
  339:       END

CVSweb interface <joel.bertrand@systella.fr>