Diff for /rpl/src/interruptions.c between versions 1.99 and 1.130

version 1.99, 2012/07/04 13:02:49 version 1.130, 2013/05/23 09:20:08
Line 1 Line 1
 /*  /*
 ================================================================================  ================================================================================
   RPL/2 (R) version 4.1.9    RPL/2 (R) version 4.1.14
   Copyright (C) 1989-2012 Dr. BERTRAND Joël    Copyright (C) 1989-2013 Dr. BERTRAND Joël
   
   This file is part of RPL/2.    This file is part of RPL/2.
   
Line 81  thread_surveillance_signaux(void *argume Line 81  thread_surveillance_signaux(void *argume
   
     volatile struct_liste_chainee_volatile  *l_element_courant;      volatile struct_liste_chainee_volatile  *l_element_courant;
   
       sigset_t                                set;
   
       sigfillset(&set);
       pthread_sigmask(SIG_BLOCK, &set, NULL);
   
     s_etat_processus = (struct_processus *) argument;      s_etat_processus = (struct_processus *) argument;
   
     for(;;)      for(;;)
Line 88  thread_surveillance_signaux(void *argume Line 93  thread_surveillance_signaux(void *argume
         attente.tv_sec = 0;          attente.tv_sec = 0;
         attente.tv_nsec = GRANULARITE_us * 1000;          attente.tv_nsec = GRANULARITE_us * 1000;
   
 #       if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #       if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
         if (sem_wait(&(*s_queue_signaux).signalisation) == 0)          if (sem_wait(&(*s_queue_signaux).signalisation) == 0)
 #       else  #       else
         if(sem_wait(semaphore_signalisation) == 0)          if (sem_wait(semaphore_signalisation) == 0)
 #       endif  #       endif
         {          {
   #           if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
               if (sem_wait(&(*s_queue_signaux).arret_signalisation) != 0)
   #           else
               if (sem_wait(semaphore_arret_signalisation) != 0)
   #           endif
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
               }
   
             if ((*s_queue_signaux).requete_arret == d_vrai)              if ((*s_queue_signaux).requete_arret == d_vrai)
             {              {
   #               if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
                   sem_post(&(*s_queue_signaux).arret_signalisation);
                   sem_post(&(*s_queue_signaux).signalisation);
   #               else
                   sem_post(semaphore_arret_signalisation);
                   sem_post(semaphore_signalisation);
   #               endif
   
                 break;                  break;
             }              }
   
 #           if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #           if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
               sem_post(&(*s_queue_signaux).arret_signalisation);
             sem_post(&(*s_queue_signaux).signalisation);              sem_post(&(*s_queue_signaux).signalisation);
 #           else  #           else
               sem_post(semaphore_arret_signalisation);
             sem_post(semaphore_signalisation);              sem_post(semaphore_signalisation);
 #           endif  #           endif
   
Line 112  thread_surveillance_signaux(void *argume Line 136  thread_surveillance_signaux(void *argume
             // affectée au processus courant pour vérifier s'il y a quelque              // affectée au processus courant pour vérifier s'il y a quelque
             // chose à traiter.              // chose à traiter.
   
 #           if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #           if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
             sem_wait(&(*s_queue_signaux).semaphore);              sem_wait(&(*s_queue_signaux).semaphore);
 #           else  #           else
             sem_wait(semaphore_queue_signaux);              sem_wait(semaphore_queue_signaux);
Line 121  thread_surveillance_signaux(void *argume Line 145  thread_surveillance_signaux(void *argume
             if ((*s_queue_signaux).pointeur_lecture !=              if ((*s_queue_signaux).pointeur_lecture !=
                     (*s_queue_signaux).pointeur_ecriture)                      (*s_queue_signaux).pointeur_ecriture)
             {              {
                   // Attention : raise() envoit le signal au thread appelant !
                   // kill() l'envoie au processus appelant, donc dans notre
                   // cas à un thread aléatoire du processus, ce qui nous
                   // convient tout à fait puisqu'il s'agit de débloquer les
                   // appels système lents.
   
                 nombre_signaux_envoyes++;                  nombre_signaux_envoyes++;
                 raise(SIGALRM);                  kill(getpid(), SIGALRM);
             }              }
   
 #           if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #           if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
             sem_post(&(*s_queue_signaux).semaphore);              sem_post(&(*s_queue_signaux).semaphore);
 #           else  #           else
             sem_post(semaphore_queue_signaux);              sem_post(semaphore_queue_signaux);
Line 134  thread_surveillance_signaux(void *argume Line 164  thread_surveillance_signaux(void *argume
             // Dans un second temps, on balaye toutes les queues de signaux              // Dans un second temps, on balaye toutes les queues de signaux
             // des threads du processus courant.              // des threads du processus courant.
   
               // Attention : l'ordre de verrouillage des mutexes est important
               // pour éviter les conditions bloquantes !
   
               pthread_mutex_lock(&mutex_interruptions);
             pthread_mutex_lock(&mutex_liste_threads);              pthread_mutex_lock(&mutex_liste_threads);
   
             l_element_courant = liste_threads;              l_element_courant = liste_threads;
   
             while(l_element_courant != NULL)              while(l_element_courant != NULL)
Line 144  thread_surveillance_signaux(void *argume Line 179  thread_surveillance_signaux(void *argume
                 {                  {
                     if ((*(*((struct_thread *) (*l_element_courant).donnee))                      if ((*(*((struct_thread *) (*l_element_courant).donnee))
                             .s_etat_processus).pointeur_signal_ecriture !=                              .s_etat_processus).pointeur_signal_ecriture !=
                             (*(*((struct_thread *) (*l_element_courant).donnee))                              (*(*((struct_thread *) (*l_element_courant)
                             .s_etat_processus).pointeur_signal_lecture)                              .donnee)).s_etat_processus)
                               .pointeur_signal_lecture)
                     {                      {
                         nombre_signaux_envoyes++;                          nombre_signaux_envoyes++;
                         pthread_kill((*((struct_thread *) (*l_element_courant)                          pthread_kill((*((struct_thread *)
                                 .donnee)).tid, SIGALRM);                                  (*l_element_courant).donnee)).tid, SIGALRM);
                     }                      }
                 }                  }
   
Line 157  thread_surveillance_signaux(void *argume Line 193  thread_surveillance_signaux(void *argume
             }              }
   
             pthread_mutex_unlock(&mutex_liste_threads);              pthread_mutex_unlock(&mutex_liste_threads);
               pthread_mutex_unlock(&mutex_interruptions);
   
             // Nanosleep              // Nanosleep
   
Line 167  thread_surveillance_signaux(void *argume Line 204  thread_surveillance_signaux(void *argume
         }          }
         else          else
         {          {
             (*s_etat_processus).erreur_systeme = d_es_processus;              if (errno != EINTR)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
               }
         }          }
     }      }
   
Line 325  retrait_thread(struct_processus *s_etat_ Line 365  retrait_thread(struct_processus *s_etat_
             (*l_element_courant).donnee)).s_etat_processus)              (*l_element_courant).donnee)).s_etat_processus)
             .pointeur_signal_lecture)              .pointeur_signal_lecture)
     {      {
 #       if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #       if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
         sem_wait(&((*s_queue_signaux).signalisation));          while(sem_wait(&((*s_queue_signaux).signalisation)) != 0)
 #       else  #       else
         sem_wait(semaphore_signalisation);          while(sem_wait(semaphore_signalisation) != 0)
 #       endif  #       endif
           {
               if (errno != EINTR)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
           }
   
         (*(*((struct_thread *) (*l_element_courant).donnee)).s_etat_processus)          (*(*((struct_thread *) (*l_element_courant).donnee)).s_etat_processus)
                 .pointeur_signal_lecture = ((*(*((struct_thread *)                  .pointeur_signal_lecture = ((*(*((struct_thread *)
Line 528  liberation_threads(struct_processus *s_e Line 575  liberation_threads(struct_processus *s_e
   
     struct_processus                            *candidat;      struct_processus                            *candidat;
   
     unsigned long                               i;      struct_liste_variables_partagees            *l_element_partage_courant;
       struct_liste_variables_partagees            *l_element_partage_suivant;
   
       struct_liste_variables_statiques            *l_element_statique_courant;
       struct_liste_variables_statiques            *l_element_statique_suivant;
   
       integer8                                    i;
   
     void                                        *element_candidat;      void                                        *element_candidat;
     void                                        *element_courant;      void                                        *element_courant;
Line 571  liberation_threads(struct_processus *s_e Line 624  liberation_threads(struct_processus *s_e
             close((*s_etat_processus).pipe_injections);              close((*s_etat_processus).pipe_injections);
             close((*s_etat_processus).pipe_nombre_injections);              close((*s_etat_processus).pipe_nombre_injections);
             close((*s_etat_processus).pipe_interruptions);              close((*s_etat_processus).pipe_interruptions);
             close((*s_etat_processus).pipe_nombre_objets_attente);              close((*s_etat_processus).pipe_nombre_elements_attente);
             close((*s_etat_processus).pipe_nombre_interruptions_attente);  
   
             liberation(s_etat_processus, (*s_etat_processus).at_exit);              liberation(s_etat_processus, (*s_etat_processus).at_exit);
   
Line 640  liberation_threads(struct_processus *s_e Line 692  liberation_threads(struct_processus *s_e
                     close((*s_argument_thread).pipe_acquittement[1]);                      close((*s_argument_thread).pipe_acquittement[1]);
                     close((*s_argument_thread).pipe_injections[1]);                      close((*s_argument_thread).pipe_injections[1]);
                     close((*s_argument_thread).pipe_nombre_injections[1]);                      close((*s_argument_thread).pipe_nombre_injections[1]);
                     close((*s_argument_thread).pipe_nombre_objets_attente[0]);                      close((*s_argument_thread).pipe_nombre_elements_attente[0]);
                     close((*s_argument_thread).pipe_interruptions[0]);                      close((*s_argument_thread).pipe_interruptions[0]);
                     close((*s_argument_thread)  
                             .pipe_nombre_interruptions_attente[0]);  
   
                     if (pthread_mutex_unlock(&((*s_argument_thread)                      if (pthread_mutex_unlock(&((*s_argument_thread)
                             .mutex_nombre_references)) != 0)                              .mutex_nombre_references)) != 0)
Line 743  liberation_threads(struct_processus *s_e Line 793  liberation_threads(struct_processus *s_e
                 }                  }
             }              }
   
             liberation_arbre_variables(s_etat_processus,              // ne peut être effacé qu'une seule fois
                     (*s_etat_processus).s_arbre_variables, d_faux);  
   
             for(i = 0; i < (*s_etat_processus).nombre_variables_statiques; i++)  
             {  
                 pthread_mutex_trylock(&((*(*s_etat_processus)  
                         .s_liste_variables_statiques[i].objet).mutex));  
                 pthread_mutex_unlock(&((*(*s_etat_processus)  
                         .s_liste_variables_statiques[i].objet).mutex));  
   
                 liberation(s_etat_processus, (*s_etat_processus)  
                         .s_liste_variables_statiques[i].objet);  
                 free((*s_etat_processus).s_liste_variables_statiques[i].nom);  
             }  
   
             free((*s_etat_processus).s_liste_variables_statiques);  
   
             // Ne peut être effacé qu'une seule fois  
             if (suppression_variables_partagees == d_faux)              if (suppression_variables_partagees == d_faux)
             {              {
                 suppression_variables_partagees = d_vrai;                  suppression_variables_partagees = d_vrai;
   
                 for(i = 0; i < (*(*s_etat_processus)                  liberation_arbre_variables_partagees(s_etat_processus,
                         .s_liste_variables_partagees).nombre_variables; i++)                          (*(*s_etat_processus).s_arbre_variables_partagees));
                 {  
                     pthread_mutex_trylock(&((*(*(*s_etat_processus)  
                             .s_liste_variables_partagees).table[i].objet)  
                             .mutex));  
                     pthread_mutex_unlock(&((*(*(*s_etat_processus)  
                             .s_liste_variables_partagees).table[i].objet)  
                             .mutex));  
   
                     liberation(s_etat_processus, (*(*s_etat_processus)                  l_element_partage_courant = (*(*s_etat_processus)
                             .s_liste_variables_partagees).table[i].objet);                          .l_liste_variables_partagees);
                     free((*(*s_etat_processus).s_liste_variables_partagees)  
                             .table[i].nom);  
                 }  
   
                 if ((*(*s_etat_processus).s_liste_variables_partagees).table                  while(l_element_partage_courant != NULL)
                         != NULL)  
                 {                  {
                     free((struct_variable_partagee *) (*(*s_etat_processus)                      l_element_partage_suivant =
                             .s_liste_variables_partagees).table);                              (*l_element_partage_courant).suivant;
                       free(l_element_partage_courant);
                       l_element_partage_courant = l_element_partage_suivant;
                 }                  }
               }
   
               liberation_arbre_variables(s_etat_processus,
                       (*s_etat_processus).s_arbre_variables, d_faux);
   
               l_element_statique_courant = (*s_etat_processus)
                       .l_liste_variables_statiques;
   
                 pthread_mutex_trylock(&((*(*s_etat_processus)              while(l_element_statique_courant != NULL)
                         .s_liste_variables_partagees).mutex));              {
                 pthread_mutex_unlock(&((*(*s_etat_processus)                  l_element_statique_suivant =
                         .s_liste_variables_partagees).mutex));                      (*l_element_statique_courant).suivant;
                   free(l_element_statique_courant);
                   l_element_statique_courant = l_element_statique_suivant;
             }              }
   
             element_courant = (*s_etat_processus).l_base_pile;              element_courant = (*s_etat_processus).l_base_pile;
Line 1301  liberation_threads(struct_processus *s_e Line 1334  liberation_threads(struct_processus *s_e
             close((*s_argument_thread).pipe_acquittement[1]);              close((*s_argument_thread).pipe_acquittement[1]);
             close((*s_argument_thread).pipe_injections[1]);              close((*s_argument_thread).pipe_injections[1]);
             close((*s_argument_thread).pipe_nombre_injections[1]);              close((*s_argument_thread).pipe_nombre_injections[1]);
             close((*s_argument_thread).pipe_nombre_objets_attente[0]);              close((*s_argument_thread).pipe_nombre_elements_attente[0]);
             close((*s_argument_thread).pipe_interruptions[0]);              close((*s_argument_thread).pipe_interruptions[0]);
             close((*s_argument_thread).pipe_nombre_interruptions_attente[0]);  
   
             if (pthread_mutex_unlock(&((*s_argument_thread)              if (pthread_mutex_unlock(&((*s_argument_thread)
                     .mutex_nombre_references)) != 0)                      .mutex_nombre_references)) != 0)
Line 1618  deverrouillage_gestionnaire_signaux(stru Line 1650  deverrouillage_gestionnaire_signaux(stru
     return;      return;
 }  }
   
   /*
   ================================================================================
     Fonctions de gestion des signaux dans les threads.
   
     Lorsqu'un processus reçoit un signal, il appelle le gestionnaire de signal
     associé qui ne fait qu'envoyer au travers de write() le signal
     reçus dans un pipe. Un second thread est bloqué sur ce pipe et
     effectue le traitement adéquat pour le signal donné.
   ================================================================================
   */
   
 #define test_signal(signal) \  #define test_signal(signal) \
     if (signal_test == SIGTEST) { signal_test = signal; return; }      if (signal_test == SIGTEST) { signal_test = signal; return; }
   
   static int          pipe_signaux;
   
   logical1
   lancement_thread_signaux(struct_processus *s_etat_processus)
   {
       pthread_attr_t                  attributs;
   
       void                            *argument;
   
       if (pipe((*s_etat_processus).pipe_signaux) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return(d_erreur);
       }
   
       pipe_signaux = (*s_etat_processus).pipe_signaux[1];
   
       if (pthread_attr_init(&attributs) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return(d_erreur);
       }
   
       if (pthread_attr_setdetachstate(&attributs, PTHREAD_CREATE_JOINABLE) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return(d_erreur);
       }
   
       argument = (*s_etat_processus).pipe_signaux;
   
       if (pthread_create(&((*s_etat_processus).thread_signaux), &attributs,
               thread_signaux, argument) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return(d_erreur);
       }
   
       return(d_absence_erreur);
   }
   
   logical1
   arret_thread_signaux(struct_processus *s_etat_processus)
   {
       unsigned char       signal;
       ssize_t             n;
   
       signal = (unsigned char ) (rpl_sigmax & 0xFF);
   
       do
       {
           n = write((*s_etat_processus).pipe_signaux[1], &signal, sizeof(signal));
   
           if (n < 0)
           {
               return(d_erreur);
           }
       } while(n != 1);
   
       pthread_join((*s_etat_processus).thread_signaux, NULL);
   
       close((*s_etat_processus).pipe_signaux[0]);
       close((*s_etat_processus).pipe_signaux[1]);
   
       return(d_absence_erreur);
   }
   
   void *
   thread_signaux(void *argument)
   {
       int                     *pipe;
   
       sigset_t                masque;
   
       struct pollfd           fds;
   
       unsigned char           signal;
   
       pipe = (int *) argument;
       fds.fd = pipe[0];
       fds.events = POLLIN;
       fds.revents = 0;
   
       sigfillset(&masque);
       pthread_sigmask(SIG_BLOCK, &masque, NULL);
   
       do
       {
           if (poll(&fds, 1, -1) == -1)
           {
               pthread_exit(NULL);
           }
   
           read(fds.fd, &signal, 1);
   
           if (signal != (0xFF & rpl_sigmax))
           {
               envoi_signal_processus(getpid(), signal);
               // Un signal SIGALRM est envoyé par le thread de surveillance
               // des signaux jusqu'à ce que les signaux soient tous traités.
           }
       } while(signal != (0xFF & rpl_sigmax));
   
       pthread_exit(NULL);
   }
   
 // Récupération des signaux  // Récupération des signaux
 // - SIGINT  (arrêt au clavier)  // - SIGINT  (arrêt au clavier)
 // - SIGTERM (signal d'arrêt en provenance du système)  // - SIGTERM (signal d'arrêt en provenance du système)
Line 1628  deverrouillage_gestionnaire_signaux(stru Line 1777  deverrouillage_gestionnaire_signaux(stru
 void  void
 interruption1(int signal)  interruption1(int signal)
 {  {
       unsigned char       signal_tronque;
   
     test_signal(signal);      test_signal(signal);
   
     switch(signal)      switch(signal)
     {      {
         case SIGINT:          case SIGINT:
             envoi_signal_processus(getpid(), rpl_sigint);              signal_tronque = (unsigned char) (rpl_sigint & 0xFF);
               write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
             break;              break;
   
         case SIGTERM:          case SIGTERM:
             envoi_signal_processus(getpid(), rpl_sigterm);              signal_tronque = (unsigned char) (rpl_sigterm & 0xFF);
               write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
             break;              break;
   
         case SIGUSR1:          case SIGUSR1:
             envoi_signal_processus(getpid(), rpl_sigalrm);              signal_tronque = (unsigned char) (rpl_sigalrm & 0xFF);
               write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
               break;
   
           default:
               // SIGALRM
             break;              break;
     }      }
   
     return;      return;
 }  }
   
   // Récupération des signaux
   // - SIGFSTP
   //
   // ATTENTION :
   // Le signal SIGFSTP provient de la mort du processus de contrôle.
   // Sous certains systèmes (Linux...), la mort du terminal de contrôle
   // se traduit par l'envoi d'un SIGHUP au processus. Sur d'autres
   // (SunOS), le processus reçoit un SIGFSTP avec une structure siginfo
   // non initialisée (pointeur NULL) issue de TERMIO.
   
   void
   interruption2(int signal)
   {
       unsigned char       signal_tronque;
   
       test_signal(signal);
   
       signal_tronque = (unsigned char) (rpl_sigtstp & 0xFF);
       write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
       return;
   }
   
   void
   interruption3(int signal)
   {
       // Si on passe par ici, c'est qu'il est impossible de récupérer
       // l'erreur d'accès à la mémoire. On sort donc du programme quitte à
       // ce qu'il reste des processus orphelins.
   
       unsigned char       message_1[] = "+++System : Uncaught access violation\n"
                                   "+++System : Aborting !\n";
       unsigned char       message_2[] = "+++System : Stack overflow\n"
                                   "+++System : Aborting !\n";
   
       test_signal(signal);
   
       if (pid_processus_pere == getpid())
       {
           kill(pid_processus_pere, SIGUSR1);
       }
   
       if (signal != SIGUSR2)
       {
           write(STDERR_FILENO, message_1, strlen(message_1));
       }
       else
       {
           write(STDERR_FILENO, message_2, strlen(message_2));
       }
   
       _exit(EXIT_FAILURE);
   }
   
   // Récupération des signaux
   // - SIGHUP
   
   void
   interruption4(int signal)
   {
       unsigned char       signal_tronque;
   
       test_signal(signal);
   
       signal_tronque = (unsigned char) (rpl_sighup & 0xFF);
       write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
       return;
   }
   
   // Récupération des signaux
   // - SIGPIPE
   
   void
   interruption5(int signal)
   {
       unsigned char       message[] = "+++System : SIGPIPE\n"
                                   "+++System : Aborting !\n";
       unsigned char       signal_tronque;
   
       test_signal(signal);
   
       if (pid_processus_pere == getpid())
       {
           signal_tronque = (unsigned char) (rpl_sigalrm & 0xFF);
           write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
       }
   
       write(STDERR_FILENO, message, strlen(message));
       return;
   }
   
 inline static void  inline static void
 signal_alrm(struct_processus *s_etat_processus, pid_t pid)  signal_alrm(struct_processus *s_etat_processus, pid_t pid)
 {  {
Line 1817  signal_int(struct_processus *s_etat_proc Line 2065  signal_int(struct_processus *s_etat_proc
     return;      return;
 }  }
   
 // Récupération des signaux  
 // - SIGFSTP  
 //  
 // ATTENTION :  
 // Le signal SIGFSTP provient de la mort du processus de contrôle.  
 // Sous certains systèmes (Linux...), la mort du terminal de contrôle  
 // se traduit par l'envoi d'un SIGHUP au processus. Sur d'autres  
 // (SunOS), le processus reçoit un SIGFSTP avec une structure siginfo  
 // non initialisée (pointeur NULL) issue de TERMIO.  
   
 void  
 interruption2(int signal)  
 {  
     test_signal(signal);  
     envoi_signal_processus(getpid(), rpl_sigtstp);  
     return;  
 }  
   
 static inline void  static inline void
 signal_tstp(struct_processus *s_etat_processus, pid_t pid)  signal_tstp(struct_processus *s_etat_processus, pid_t pid)
 {  {
Line 1882  signal_tstp(struct_processus *s_etat_pro Line 2112  signal_tstp(struct_processus *s_etat_pro
     return;      return;
 }  }
   
 void  
 interruption3(int signal)  
 {  
     // Si on passe par ici, c'est qu'il est impossible de récupérer  
     // l'erreur d'accès à la mémoire. On sort donc du programme quitte à  
     // ce qu'il reste des processus orphelins.  
   
     unsigned char       message_1[] = "+++System : Uncaught access violation\n"  
                                 "+++System : Aborting !\n";  
     unsigned char       message_2[] = "+++System : Stack overflow\n"  
                                 "+++System : Aborting !\n";  
   
     test_signal(signal);  
   
     if (pid_processus_pere == getpid())  
     {  
         kill(pid_processus_pere, SIGUSR1);  
     }  
   
     if (signal != SIGUSR2)  
     {  
         write(STDERR_FILENO, message_1, strlen(message_1));  
     }  
     else  
     {  
         write(STDERR_FILENO, message_2, strlen(message_2));  
     }  
   
     _exit(EXIT_FAILURE);  
 }  
   
   
 static void  static void
 sortie_interruption_depassement_pile(void *arg1, void *arg2, void *arg3)  sortie_interruption_depassement_pile(void *arg1, void *arg2, void *arg3)
 {  {
Line 1931  sortie_interruption_depassement_pile(voi Line 2129  sortie_interruption_depassement_pile(voi
     return;      return;
 }  }
   
   
 void  void
 interruption_depassement_pile(int urgence, stackoverflow_context_t scp)  interruption_depassement_pile(int urgence, stackoverflow_context_t scp)
 {  {
Line 1949  interruption_depassement_pile(int urgenc Line 2146  interruption_depassement_pile(int urgenc
     return;      return;
 }  }
   
   
 int  int
 interruption_violation_access(void *adresse_fautive, int gravite)  interruption_violation_access(void *adresse_fautive, int gravite)
 {  {
Line 2125  signal_inject(struct_processus *s_etat_p Line 2321  signal_inject(struct_processus *s_etat_p
     return;      return;
 }  }
   
 // Récupération des signaux  
 // - SIGPIPE  
   
 void  
 interruption5(int signal)  
 {  
     unsigned char       message[] = "+++System : SIGPIPE\n"  
                                 "+++System : Aborting !\n";  
   
     test_signal(signal);  
   
     if (pid_processus_pere == getpid())  
     {  
         envoi_signal_processus(pid_processus_pere, rpl_sigalrm);  
     }  
   
     write(STDERR_FILENO, message, strlen(message));  
     return;  
 }  
   
 static inline void  static inline void
 signal_urg(struct_processus *s_etat_processus, pid_t pid)  signal_urg(struct_processus *s_etat_processus, pid_t pid)
Line 2238  signal_abort(struct_processus *s_etat_pr Line 2415  signal_abort(struct_processus *s_etat_pr
     return;      return;
 }  }
   
 // Récupération des signaux  
 // - SIGHUP  
   
 void  
 interruption4(int signal)  
 {  
     test_signal(signal);  
     envoi_signal_processus(getpid(), rpl_sighup);  
     return;  
 }  
   
 static inline void  static inline void
 signal_hup(struct_processus *s_etat_processus, pid_t pid)  signal_hup(struct_processus *s_etat_processus, pid_t pid)
Line 2264  signal_hup(struct_processus *s_etat_proc Line 2431  signal_hup(struct_processus *s_etat_proc
         return;          return;
     }      }
   
     snprintf(nom, 8 + 64 + 1, "rpl-out-%lu-%lu", (unsigned long) getpid(),      snprintf(nom, 8 + 64 + 1, "rpl-out-%llu-%llu",
             (unsigned long) pthread_self());              (unsigned long long) getpid(),
               (unsigned long long) pthread_self());
   
     if ((fichier = fopen(nom, "w+")) != NULL)      if ((fichier = fopen(nom, "w+")) != NULL)
     {      {
Line 2374  envoi_interruptions(struct_processus *s_ Line 2542  envoi_interruptions(struct_processus *s_
         default:          default:
             if ((*s_etat_processus).langue == 'F')              if ((*s_etat_processus).langue == 'F')
             {              {
                 printf("+++System : Spurious signal (%d) !\n", signal);                  printf("+++System : Signal inconnu (%d) !\n", signal);
             }              }
             else              else
             {              {
                 printf("+++System : Signal inconnu (%d) !\n", signal);                  printf("+++System : Spurious signal (%d) !\n", signal);
             }              }
   
             break;              break;
Line 2397  scrutation_interruptions(struct_processu Line 2565  scrutation_interruptions(struct_processu
     // à lire. Les pointeurs d'écriture pointent sur les prochains éléments à      // à lire. Les pointeurs d'écriture pointent sur les prochains éléments à
     // écrire.      // écrire.
   
 #   if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #   if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
         if (sem_trywait(&((*s_queue_signaux).semaphore)) == 0)          if (sem_trywait(&((*s_queue_signaux).semaphore)) == 0)
 #   else  #   else
         if (sem_trywait(semaphore_queue_signaux) == 0)          if (sem_trywait(semaphore_queue_signaux) == 0)
Line 2417  scrutation_interruptions(struct_processu Line 2585  scrutation_interruptions(struct_processu
                     ((*s_queue_signaux).pointeur_lecture + 1)                      ((*s_queue_signaux).pointeur_lecture + 1)
                     % LONGUEUR_QUEUE_SIGNAUX;                      % LONGUEUR_QUEUE_SIGNAUX;
   
 #           if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #           if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
             sem_wait(&((*s_queue_signaux).signalisation));              while(sem_wait(&((*s_queue_signaux).signalisation)) != 0)
 #           else  #           else
             sem_wait(semaphore_signalisation);              while(sem_wait(semaphore_signalisation) != 0)
 #           endif  #           endif
               {
                   if (errno != EINTR)
                   {
                       (*s_etat_processus).erreur_systeme = d_es_processus;
                       return;
                   }
               }
         }          }
   
 #       if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #       if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
             sem_post(&((*s_queue_signaux).semaphore));              sem_post(&((*s_queue_signaux).semaphore));
 #       else  #       else
             sem_post(semaphore_queue_signaux);              sem_post(semaphore_queue_signaux);
Line 2448  scrutation_interruptions(struct_processu Line 2623  scrutation_interruptions(struct_processu
                     ((*s_etat_processus).pointeur_signal_lecture + 1)                      ((*s_etat_processus).pointeur_signal_lecture + 1)
                     % LONGUEUR_QUEUE_SIGNAUX;                      % LONGUEUR_QUEUE_SIGNAUX;
   
 #           if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #           if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
             sem_wait(&((*s_queue_signaux).signalisation));              while(sem_wait(&((*s_queue_signaux).signalisation)) != 0)
 #           else  #           else
             sem_wait(semaphore_signalisation);              while(sem_wait(semaphore_signalisation) != 0)
 #           endif  #           endif
               {
                   if (errno != EINTR)
                   {
                       (*s_etat_processus).erreur_systeme = d_es_processus;
                       return;
                   }
               }
         }          }
   
         pthread_mutex_unlock(&mutex_interruptions);          pthread_mutex_unlock(&mutex_interruptions);
Line 2560  envoi_signal_processus(pid_t pid, enum s Line 2742  envoi_signal_processus(pid_t pid, enum s
             return(1);              return(1);
         }          }
   
 #       if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #       if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
             while(sem_wait(&((*s_queue_signaux).semaphore)) != 0)              while(sem_wait(&((*s_queue_signaux).semaphore)) != 0)
 #       else  #       else
             while(sem_wait(semaphore_queue_signaux) != 0)              while(sem_wait(semaphore_queue_signaux) != 0)
Line 2581  envoi_signal_processus(pid_t pid, enum s Line 2763  envoi_signal_processus(pid_t pid, enum s
                 ((*s_queue_signaux).pointeur_ecriture + 1)                  ((*s_queue_signaux).pointeur_ecriture + 1)
                 % LONGUEUR_QUEUE_SIGNAUX;                  % LONGUEUR_QUEUE_SIGNAUX;
   
 #       if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #       if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
             if (sem_post(&((*s_queue_signaux).semaphore)) != 0)              if (sem_post(&((*s_queue_signaux).semaphore)) != 0)
 #       else  #       else
             if (sem_post(semaphore_queue_signaux) != 0)              if (sem_post(semaphore_queue_signaux) != 0)
Line 2590  envoi_signal_processus(pid_t pid, enum s Line 2772  envoi_signal_processus(pid_t pid, enum s
             return(1);              return(1);
         }          }
   
 #       if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #       if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
             if (sem_post(&((*s_queue_signaux).signalisation)) != 0)              if (sem_post(&((*s_queue_signaux).signalisation)) != 0)
 #       else  #       else
             if (sem_post(semaphore_signalisation) != 0)              if (sem_post(semaphore_signalisation) != 0)
Line 2817  envoi_signal_thread(pthread_t tid, enum Line 2999  envoi_signal_thread(pthread_t tid, enum
         return(1);          return(1);
     }      }
   
       s_etat_processus = (*((struct_thread *) (*l_element_courant).donnee))
               .s_etat_processus;
   
     if (pthread_mutex_lock(&mutex_interruptions) != 0)      if (pthread_mutex_lock(&mutex_interruptions) != 0)
     {      {
         pthread_mutex_unlock(&mutex_liste_threads);          pthread_mutex_unlock(&mutex_liste_threads);
         return(1);          return(1);
     }      }
   
     s_etat_processus = (*((struct_thread *) (*l_element_courant).donnee))  
             .s_etat_processus;  
   
     (*s_etat_processus).signaux_en_queue      (*s_etat_processus).signaux_en_queue
             [(*s_etat_processus).pointeur_signal_ecriture] = signal;              [(*s_etat_processus).pointeur_signal_ecriture] = signal;
     (*s_etat_processus).pointeur_signal_ecriture =      (*s_etat_processus).pointeur_signal_ecriture =
Line 2843  envoi_signal_thread(pthread_t tid, enum Line 3025  envoi_signal_thread(pthread_t tid, enum
         return(1);          return(1);
     }      }
   
 #   if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #   if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
     if (sem_post(&((*s_queue_signaux).signalisation)) != 0)      if (sem_post(&((*s_queue_signaux).signalisation)) != 0)
     {      {
         return(1);          return(1);
Line 2871  envoi_signal_contexte(struct_processus * Line 3053  envoi_signal_contexte(struct_processus *
             % LONGUEUR_QUEUE_SIGNAUX;              % LONGUEUR_QUEUE_SIGNAUX;
     pthread_mutex_unlock(&mutex_interruptions);      pthread_mutex_unlock(&mutex_interruptions);
   
 #   if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #   if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
     if (sem_post(&((*s_queue_signaux).signalisation)) != 0)      if (sem_post(&((*s_queue_signaux).signalisation)) != 0)
     {      {
         return(1);          return(1);
Line 2954  creation_queue_signaux(struct_processus Line 3136  creation_queue_signaux(struct_processus
 #       ifndef SEMAPHORES_NOMMES  #       ifndef SEMAPHORES_NOMMES
             sem_init(&((*s_queue_signaux).semaphore), 1, 1);              sem_init(&((*s_queue_signaux).semaphore), 1, 1);
             sem_init(&((*s_queue_signaux).signalisation), 1, 0);              sem_init(&((*s_queue_signaux).signalisation), 1, 0);
               sem_init(&((*s_queue_signaux).arret_signalisation), 1, 1);
 #       else  #       else
             if ((semaphore_queue_signaux = sem_init2(1, getpid(), SEM_QUEUE))              if ((semaphore_queue_signaux = sem_init2(1, getpid(), SEM_QUEUE))
                     == SEM_FAILED)                      == SEM_FAILED)
Line 2962  creation_queue_signaux(struct_processus Line 3145  creation_queue_signaux(struct_processus
                 return;                  return;
             }              }
   
             if ((semaphore_signalisation = sem_init2(1, getpid(),              if ((semaphore_signalisation = sem_init2(0, getpid(),
                     SEM_SIGNALISATION)) == SEM_FAILED)                      SEM_SIGNALISATION)) == SEM_FAILED)
             {              {
                 (*s_etat_processus).erreur_systeme = d_es_processus;                  (*s_etat_processus).erreur_systeme = d_es_processus;
                 return;                  return;
             }              }
   
               if ((semaphore_arret_signalisation = sem_init2(1, getpid(),
                       SEM_ARRET_SIGNALISATION)) == SEM_FAILED)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
 #       endif  #       endif
   
         (*s_queue_signaux).pointeur_lecture = 0;          (*s_queue_signaux).pointeur_lecture = 0;
         (*s_queue_signaux).pointeur_ecriture = 0;          (*s_queue_signaux).pointeur_ecriture = 0;
   
         (*s_queue_signaux).requete_arret = d_faux;          (*s_queue_signaux).requete_arret = d_faux;
   
         if (msync(s_queue_signaux, sizeof(struct_queue_signaux), 0))          if (msync(s_queue_signaux, sizeof(struct_queue_signaux), 0))
Line 3037  creation_queue_signaux(struct_processus Line 3228  creation_queue_signaux(struct_processus
   
             sem_init(&((*s_queue_signaux).semaphore), 1, 1);              sem_init(&((*s_queue_signaux).semaphore), 1, 1);
             sem_init(&((*s_queue_signaux).signalisation), 1, 0);              sem_init(&((*s_queue_signaux).signalisation), 1, 0);
               sem_init(&((*s_queue_signaux).arret_signalisation), 1, 1);
   
             (*s_queue_signaux).pointeur_lecture = 0;              (*s_queue_signaux).pointeur_lecture = 0;
             (*s_queue_signaux).pointeur_ecriture = 0;              (*s_queue_signaux).pointeur_ecriture = 0;
             (*s_queue_signaux).requete_arret = d_faux;              (*s_queue_signaux).requete_arret = d_faux;
Line 3060  creation_queue_signaux(struct_processus Line 3253  creation_queue_signaux(struct_processus
   
             sem_init(&((*s_queue_signaux).semaphore), 1, 1);              sem_init(&((*s_queue_signaux).semaphore), 1, 1);
             sem_init(&((*s_queue_signaux).signalisation), 1, 0);              sem_init(&((*s_queue_signaux).signalisation), 1, 0);
               sem_init(&((*s_queue_signaux).arret_signalisation), 1, 1);
   
             (*s_queue_signaux).pointeur_lecture = 0;              (*s_queue_signaux).pointeur_lecture = 0;
             (*s_queue_signaux).pointeur_ecriture = 0;              (*s_queue_signaux).pointeur_ecriture = 0;
             (*s_queue_signaux).requete_arret = d_faux;              (*s_queue_signaux).requete_arret = d_faux;
Line 3138  creation_queue_signaux(struct_processus Line 3333  creation_queue_signaux(struct_processus
 void  void
 liberation_queue_signaux(struct_processus *s_etat_processus)  liberation_queue_signaux(struct_processus *s_etat_processus)
 {  {
     // Incrémenter le sémaphore pour être sûr de le débloquer.  #   if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
       sem_wait(&((*s_queue_signaux).arret_signalisation));
   #   else
       sem_wait(semaphore_arret_signalisation);
   #   endif
   
     (*s_queue_signaux).requete_arret = d_vrai;      (*s_queue_signaux).requete_arret = d_vrai;
   
 #   if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #   if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
       sem_post(&((*s_queue_signaux).arret_signalisation));
   #   else
       sem_post(semaphore_arret_signalisation);
   #   endif
   
       // Incrémenter le sémaphore pour être sûr de le débloquer.
   
   #   if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
     sem_post(&((*s_queue_signaux).signalisation));      sem_post(&((*s_queue_signaux).signalisation));
 #   else  #   else
     sem_post(semaphore_signalisation);      sem_post(semaphore_signalisation);
Line 3161  liberation_queue_signaux(struct_processu Line 3368  liberation_queue_signaux(struct_processu
 #       endif  #       endif
 #   else // POSIX  #   else // POSIX
 #       ifndef SEMAPHORES_NOMMES  #       ifndef SEMAPHORES_NOMMES
             sem_close(&((*s_queue_signaux).semaphore));              // Rien à faire, les sémaphores sont anonymes.
             sem_close(&((*s_queue_signaux).signalisation));  
 #       else  #       else
             sem_close(semaphore_queue_signaux);              sem_close(semaphore_queue_signaux);
             sem_close(semaphore_signalisation);              sem_close(semaphore_signalisation);
               sem_close(semaphore_arret_signalisation);
 #       endif  #       endif
   
         if (munmap(s_queue_signaux, sizeof(struct_queue_signaux)) != 0)          if (munmap(s_queue_signaux, sizeof(struct_queue_signaux)) != 0)
Line 3201  destruction_queue_signaux(struct_process Line 3408  destruction_queue_signaux(struct_process
         unsigned char       *nom;          unsigned char       *nom;
 #   endif  #   endif
   
     // Incrémenter le sémaphore pour être sûr de le débloquer.  #   if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
       sem_wait(&((*s_queue_signaux).arret_signalisation));
   #   else
       sem_wait(semaphore_arret_signalisation);
   #   endif
   
     (*s_queue_signaux).requete_arret = d_vrai;      (*s_queue_signaux).requete_arret = d_vrai;
   
 #   if defined(SEMAPHORES_NOMMES) || defined(IPCS_SYSV)  #   if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
       sem_post(&((*s_queue_signaux).arret_signalisation));
   #   else
       sem_post(semaphore_arret_signalisation);
   #   endif
   
       // Incrémenter le sémaphore pour être sûr de le débloquer.
   
   #   if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
     sem_post(&((*s_queue_signaux).signalisation));      sem_post(&((*s_queue_signaux).signalisation));
 #   else  #   else
     sem_post(semaphore_signalisation);      sem_post(semaphore_signalisation);
Line 3235  destruction_queue_signaux(struct_process Line 3454  destruction_queue_signaux(struct_process
             unlink((*s_queue_signaux).signalisation.path);              unlink((*s_queue_signaux).signalisation.path);
             free((*s_queue_signaux).signalisation.path);              free((*s_queue_signaux).signalisation.path);
   
               if (semctl((*s_queue_signaux).arret_signalisation.sem, 0, IPC_RMID)
                       == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
   
               unlink((*s_queue_signaux).arret_signalisation.path);
               free((*s_queue_signaux).arret_signalisation.path);
   
             if (shmdt(s_queue_signaux) == -1)              if (shmdt(s_queue_signaux) == -1)
             {              {
                 (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;                  (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
Line 3263  destruction_queue_signaux(struct_process Line 3492  destruction_queue_signaux(struct_process
             sem_close(&((*s_queue_signaux).signalisation));              sem_close(&((*s_queue_signaux).signalisation));
             sem_destroy(&((*s_queue_signaux).signalisation));              sem_destroy(&((*s_queue_signaux).signalisation));
   
               sem_close(&((*s_queue_signaux).arret_signalisation));
               sem_destroy(&((*s_queue_signaux).arret_signalisation));
   
             if (DosFreeMem(s_queue_signaux) != 0)              if (DosFreeMem(s_queue_signaux) != 0)
             {              {
                 (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;                  (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
Line 3271  destruction_queue_signaux(struct_process Line 3503  destruction_queue_signaux(struct_process
 #       endif  #       endif
 #   else // POSIX  #   else // POSIX
 #       ifndef SEMAPHORES_NOMMES  #       ifndef SEMAPHORES_NOMMES
             sem_close(&((*s_queue_signaux).semaphore));  
             sem_destroy(&((*s_queue_signaux).semaphore));              sem_destroy(&((*s_queue_signaux).semaphore));
   
             sem_close(&((*s_queue_signaux).signalisation));  
             sem_destroy(&((*s_queue_signaux).signalisation));              sem_destroy(&((*s_queue_signaux).signalisation));
               sem_destroy(&((*s_queue_signaux).arret_signalisation));
 #       else  #       else
             sem_close(semaphore_queue_signaux);              sem_close(semaphore_queue_signaux);
             sem_destroy2(semaphore_queue_signaux, getpid(), SEM_QUEUE);              sem_destroy2(semaphore_queue_signaux, getpid(), SEM_QUEUE);
   
             sem_close(semaphore_signalisation);              sem_close(semaphore_signalisation);
             sem_destroy2(semaphore_signalisation, getpid(), SEM_SIGNALISATION);              sem_destroy2(semaphore_signalisation, getpid(), SEM_SIGNALISATION);
   
               sem_close(semaphore_arret_signalisation);
               sem_destroy2(semaphore_arret_signalisation, getpid(),
                       SEM_ARRET_SIGNALISATION);
 #       endif  #       endif
   
         if (munmap(s_queue_signaux, sizeof(struct_queue_signaux)) != 0)          if (munmap(s_queue_signaux, sizeof(struct_queue_signaux)) != 0)

Removed from v.1.99  
changed lines
  Added in v.1.130


CVSweb interface <joel.bertrand@systella.fr>