Diff for /rpl/src/interruptions.c between versions 1.31 and 1.183

version 1.31, 2010/08/17 14:15:20 version 1.183, 2016/07/22 14:45:30
Line 1 Line 1
 /*  /*
 ================================================================================  ================================================================================
   RPL/2 (R) version 4.0.18    RPL/2 (R) version 4.1.25
   Copyright (C) 1989-2010 Dr. BERTRAND Joël    Copyright (C) 1989-2016 Dr. BERTRAND Joël
   
   This file is part of RPL/2.    This file is part of RPL/2.
   
Line 52  typedef struct liste_chainee_volatile Line 52  typedef struct liste_chainee_volatile
     volatile void                           *donnee;      volatile void                           *donnee;
 } struct_liste_chainee_volatile;  } struct_liste_chainee_volatile;
   
   
 static volatile struct_liste_chainee_volatile   *liste_threads  static volatile struct_liste_chainee_volatile   *liste_threads
         = NULL;          = NULL;
 static volatile struct_liste_chainee_volatile   *liste_threads_surveillance  static volatile struct_liste_chainee_volatile   *liste_threads_surveillance
         = NULL;          = NULL;
   static volatile int                             code_erreur_gsl = 0;
   
   unsigned char                                   *racine_segment;
   
   static void *
   thread_surveillance_signaux(void *argument)
   {
       // Cette fonction est lancée dans un thread créé par processus pour
       // gérer le cas des appels système qui seraient bloqués lors de l'arrivée du
       // signal SIGALRM. Les processus externes n'envoient plus un signal au
       // processus ou au thread à signaler mais positionnent les informations
       // nécessaires dans la queue des signaux et incrémentent le sémaphore.
       // Le sémaphore est décrémenté lorsque le signal est effectivement traité.
   
       int                                     ios;
       int                                     nombre_signaux_envoyes;
   
       struct_processus                        *s_etat_processus;
   
       struct timespec                         attente;
   
       volatile struct_liste_chainee_volatile  *l_element_courant;
   
       sigset_t                                set;
   
       sigfillset(&set);
       pthread_sigmask(SIG_BLOCK, &set, NULL);
   
       s_etat_processus = (struct_processus *) argument;
   
       for(;;)
       {
           attente.tv_sec = 0;
           attente.tv_nsec = GRANULARITE_us * 1000;
   
           if (sem_wait(semaphore_signalisation) == 0)
           {
               while((ios = sem_wait(semaphore_arret_signalisation)) != 0)
               {
                   if (errno != EINTR)
                   {
                       (*s_etat_processus).erreur_systeme = d_es_processus;
                   }
               }
   
               if ((*s_queue_signaux).requete_arret == d_vrai)
               {
                   sem_post(semaphore_arret_signalisation);
                   sem_post(semaphore_signalisation);
   
                   break;
               }
   
               sem_post(semaphore_signalisation);
   
               nombre_signaux_envoyes = 0;
   
               // Dans un premier temps, on verrouille la queue des signaux
               // affectée au processus courant pour vérifier s'il y a quelque
               // chose à traiter.
   
               while((ios = sem_wait(semaphore_queue_signaux)) != 0)
               {
                   if (errno != EINTR)
                   {
                       (*s_etat_processus).erreur_systeme = d_es_processus;
                   }
               }
   
               if ((*s_queue_signaux).pointeur_lecture !=
                       (*s_queue_signaux).pointeur_ecriture)
               {
                   // Attention : raise() envoit le signal au thread appelant !
                   // kill() l'envoie au processus appelant, donc dans notre
                   // cas à un thread aléatoire du processus, ce qui nous
                   // convient tout à fait puisqu'il s'agit de débloquer les
                   // appels système lents.
   
                   nombre_signaux_envoyes++;
                   kill(getpid(), SIGALRM);
                   sched_yield();
               }
   
               sem_post(semaphore_queue_signaux);
               sem_post(semaphore_arret_signalisation);
   
               // Dans un second temps, on balaye toutes les queues de signaux
               // des threads du processus courant.
   
               // Attention : l'ordre de verrouillage des mutexes est important
               // pour éviter les conditions bloquantes !
   
               pthread_mutex_lock(&mutex_liste_threads);
   
               l_element_courant = liste_threads;
   
               while(l_element_courant != NULL)
               {
                   if ((*((struct_thread *) (*l_element_courant).donnee)).pid
                           == getpid())
                   {
                       pthread_mutex_lock(&((*(*((struct_thread *)
                               (*l_element_courant).donnee)).s_etat_processus)
                               .mutex_signaux));
   
                       if ((*(*((struct_thread *) (*l_element_courant).donnee))
                               .s_etat_processus).pointeur_signal_ecriture !=
                               (*(*((struct_thread *) (*l_element_courant)
                               .donnee)).s_etat_processus).pointeur_signal_lecture)
                       {
                           nombre_signaux_envoyes++;
                           pthread_kill((*((struct_thread *)
                                   (*l_element_courant).donnee)).tid, SIGALRM);
                           sched_yield();
                       }
   
                       pthread_mutex_unlock(&((*(*((struct_thread *)
                               (*l_element_courant).donnee)).s_etat_processus)
                               .mutex_signaux));
                   }
   
                   l_element_courant = (*l_element_courant).suivant;
               }
   
               pthread_mutex_unlock(&mutex_liste_threads);
   
               // Nanosleep
   
               if (nombre_signaux_envoyes > 0)
               {
                   nanosleep(&attente, NULL);
               }
           }
           else
           {
               if (errno != EINTR)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
               }
           }
       }
   
       pthread_exit(NULL);
   }
   
 void  void
 modification_pid_thread_pere(struct_processus *s_etat_processus)  modification_pid_thread_pere(struct_processus *s_etat_processus)
Line 74  modification_pid_thread_pere(struct_proc Line 217  modification_pid_thread_pere(struct_proc
 void  void
 insertion_thread(struct_processus *s_etat_processus, logical1 thread_principal)  insertion_thread(struct_processus *s_etat_processus, logical1 thread_principal)
 {  {
     sigset_t                                    oldset;  
     sigset_t                                    set;  
   
     volatile struct_liste_chainee_volatile      *l_nouvel_objet;      volatile struct_liste_chainee_volatile      *l_nouvel_objet;
   
     sigfillset(&set);  
     pthread_sigmask(SIG_BLOCK, &set, &oldset);  
   
     if ((l_nouvel_objet = malloc(sizeof(struct_liste_chainee_volatile)))      if ((l_nouvel_objet = malloc(sizeof(struct_liste_chainee_volatile)))
             == NULL)              == NULL)
     {      {
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
         sigpending(&set);  
   
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
         return;          return;
     }      }
   
     if (((*l_nouvel_objet).donnee = malloc(sizeof(struct_thread))) == NULL)      if (((*l_nouvel_objet).donnee = malloc(sizeof(struct_thread))) == NULL)
     {      {
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
         sigpending(&set);  
   
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
         return;          return;
     }      }
Line 108  insertion_thread(struct_processus *s_eta Line 239  insertion_thread(struct_processus *s_eta
     (*((struct_thread *) (*l_nouvel_objet).donnee)).s_etat_processus =      (*((struct_thread *) (*l_nouvel_objet).donnee)).s_etat_processus =
             s_etat_processus;              s_etat_processus;
   
 #   ifndef SEMAPHORES_NOMMES      if (pthread_mutex_lock(&mutex_liste_threads) != 0)
     while(sem_wait(&semaphore_liste_threads) == -1)  
 #   else  
     while(sem_wait(semaphore_liste_threads) == -1)  
 #   endif  
     {      {
         if (errno != EINTR)          (*s_etat_processus).erreur_systeme = d_es_processus;
         {          return;
             pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
             sigpending(&set);  
   
             (*s_etat_processus).erreur_systeme = d_es_processus;  
             return;  
         }  
     }      }
   
     (*l_nouvel_objet).suivant = liste_threads;      (*l_nouvel_objet).suivant = liste_threads;
     liste_threads = l_nouvel_objet;      liste_threads = l_nouvel_objet;
   
 #   ifndef SEMAPHORES_NOMMES      if (pthread_mutex_unlock(&mutex_liste_threads) != 0)
     if (sem_post(&semaphore_liste_threads) != 0)  
 #   else  
     if (sem_post(semaphore_liste_threads) != 0)  
 #   endif  
     {      {
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
         sigpending(&set);  
   
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
   
     pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
     sigpending(&set);  
     return;      return;
 }  }
   
Line 149  void Line 261  void
 insertion_thread_surveillance(struct_processus *s_etat_processus,  insertion_thread_surveillance(struct_processus *s_etat_processus,
         struct_descripteur_thread *s_argument_thread)          struct_descripteur_thread *s_argument_thread)
 {  {
     sigset_t                                    oldset;  
     sigset_t                                    set;  
   
     volatile struct_liste_chainee_volatile      *l_nouvel_objet;      volatile struct_liste_chainee_volatile      *l_nouvel_objet;
   
     sigfillset(&set);  
     pthread_sigmask(SIG_BLOCK, &set, &oldset);  
   
     if ((l_nouvel_objet = malloc(sizeof(struct_liste_chainee_volatile)))      if ((l_nouvel_objet = malloc(sizeof(struct_liste_chainee_volatile)))
             == NULL)              == NULL)
     {      {
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
         sigpending(&set);  
   
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
         return;          return;
     }      }
   
 #   ifndef SEMAPHORES_NOMMES      if (pthread_mutex_lock(&mutex_liste_threads) != 0)
     while(sem_wait(&semaphore_liste_threads) == -1)  
 #   else  
     while(sem_wait(semaphore_liste_threads) == -1)  
 #   endif  
     {      {
         if (errno != EINTR)          (*s_etat_processus).erreur_systeme = d_es_processus;
         {          return;
             pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
             sigpending(&set);  
   
             (*s_etat_processus).erreur_systeme = d_es_processus;  
             return;  
         }  
     }      }
   
     pthread_mutex_lock(&((*s_argument_thread).mutex));      pthread_mutex_lock(&((*s_argument_thread).mutex_nombre_references));
     (*s_argument_thread).nombre_references++;      (*s_argument_thread).nombre_references++;
     pthread_mutex_unlock(&((*s_argument_thread).mutex));      pthread_mutex_unlock(&((*s_argument_thread).mutex_nombre_references));
   
     (*l_nouvel_objet).suivant = liste_threads_surveillance;      (*l_nouvel_objet).suivant = liste_threads_surveillance;
     (*l_nouvel_objet).donnee = (void *) s_argument_thread;      (*l_nouvel_objet).donnee = (void *) s_argument_thread;
   
     liste_threads_surveillance = l_nouvel_objet;      liste_threads_surveillance = l_nouvel_objet;
   
 #   ifndef SEMAPHORES_NOMMES      if (pthread_mutex_unlock(&mutex_liste_threads) != 0)
     if (sem_post(&semaphore_liste_threads) != 0)  
 #   else  
     if (sem_post(semaphore_liste_threads) != 0)  
 #   endif  
     {      {
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
         sigpending(&set);  
   
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
   
     pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
     sigpending(&set);  
     return;      return;
 }  }
   
 void  void
 retrait_thread(struct_processus *s_etat_processus)  retrait_thread(struct_processus *s_etat_processus)
 {  {
     sigset_t                                oldset;  
     sigset_t                                set;  
   
     volatile struct_liste_chainee_volatile  *l_element_precedent;      volatile struct_liste_chainee_volatile  *l_element_precedent;
     volatile struct_liste_chainee_volatile  *l_element_courant;      volatile struct_liste_chainee_volatile  *l_element_courant;
   
     sigfillset(&set);      if (pthread_mutex_lock(&mutex_liste_threads) != 0)
     pthread_sigmask(SIG_BLOCK, &set, &oldset);  
   
 #   ifndef SEMAPHORES_NOMMES  
     while(sem_wait(&semaphore_liste_threads) == -1)  
 #   else  
     while(sem_wait(semaphore_liste_threads) == -1)  
 #   endif  
     {      {
         if (errno != EINTR)          (*s_etat_processus).erreur_systeme = d_es_processus;
         {          return;
             pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
             sigpending(&set);  
   
             (*s_etat_processus).erreur_systeme = d_es_processus;  
             return;  
         }  
     }      }
   
     l_element_precedent = NULL;      l_element_precedent = NULL;
Line 256  retrait_thread(struct_processus *s_etat_ Line 324  retrait_thread(struct_processus *s_etat_
   
     if (l_element_courant == NULL)      if (l_element_courant == NULL)
     {      {
 #       ifndef SEMAPHORES_NOMMES          pthread_mutex_unlock(&mutex_liste_threads);
         sem_post(&semaphore_liste_threads);  
 #       else  
         sem_post(semaphore_liste_threads);  
 #       endif  
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
         sigpending(&set);  
   
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
Line 277  retrait_thread(struct_processus *s_etat_ Line 338  retrait_thread(struct_processus *s_etat_
         (*l_element_precedent).suivant = (*l_element_courant).suivant;          (*l_element_precedent).suivant = (*l_element_courant).suivant;
     }      }
   
     if (pthread_setspecific(semaphore_fork_processus_courant, NULL) != 0)      if (pthread_mutex_unlock(&mutex_liste_threads) != 0)
     {      {
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
   
 #       ifndef SEMAPHORES_NOMMES  
         sem_post(&semaphore_liste_threads);  
 #       else  
         sem_post(semaphore_liste_threads);  
 #       endif  
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
         sigpending(&set);  
         return;          return;
     }      }
   
 #   ifndef SEMAPHORES_NOMMES      // Le thread ne peut plus traiter de signaux explicites. Il convient
     if (sem_post(&semaphore_liste_threads) != 0)      // alors de corriger le sémaphore pour annuler les signaux en attente.
 #   else  
     if (sem_post(semaphore_liste_threads) != 0)      while((*(*((struct_thread *) (*l_element_courant).donnee)).s_etat_processus)
 #   endif              .pointeur_signal_ecriture != (*(*((struct_thread *)
               (*l_element_courant).donnee)).s_etat_processus)
               .pointeur_signal_lecture)
     {      {
         (*s_etat_processus).erreur_systeme = d_es_processus;          while(sem_wait(semaphore_signalisation) != 0)
           {
               if (errno != EINTR)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
           }
   
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);          (*(*((struct_thread *) (*l_element_courant).donnee)).s_etat_processus)
         sigpending(&set);                  .pointeur_signal_lecture = ((*(*((struct_thread *)
         return;                  (*l_element_courant).donnee)).s_etat_processus)
                   .pointeur_signal_lecture + 1) % LONGUEUR_QUEUE_SIGNAUX;
     }      }
   
     free((void *) (*l_element_courant).donnee);      free((void *) (*l_element_courant).donnee);
     free((struct_liste_chainee_volatile *) l_element_courant);      free((struct_liste_chainee_volatile *) l_element_courant);
   
     pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
     sigpending(&set);  
     return;      return;
 }  }
   
Line 316  void Line 377  void
 retrait_thread_surveillance(struct_processus *s_etat_processus,  retrait_thread_surveillance(struct_processus *s_etat_processus,
         struct_descripteur_thread *s_argument_thread)          struct_descripteur_thread *s_argument_thread)
 {  {
     sigset_t                                set;  
     sigset_t                                oldset;  
   
     volatile struct_liste_chainee_volatile  *l_element_precedent;      volatile struct_liste_chainee_volatile  *l_element_precedent;
     volatile struct_liste_chainee_volatile  *l_element_courant;      volatile struct_liste_chainee_volatile  *l_element_courant;
   
     sigfillset(&set);      if (pthread_mutex_lock(&mutex_liste_threads) != 0)
     pthread_sigmask(SIG_BLOCK, &set, &oldset);  
   
 #   ifndef SEMAPHORES_NOMMES  
     while(sem_wait(&semaphore_liste_threads) == -1)  
 #   else  
     while(sem_wait(semaphore_liste_threads) == -1)  
 #   endif  
     {      {
         if (errno != EINTR)          (*s_etat_processus).erreur_systeme = d_es_processus;
         {          return;
             pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
             sigpending(&set);  
   
             (*s_etat_processus).erreur_systeme = d_es_processus;  
             return;  
         }  
     }      }
   
     l_element_precedent = NULL;      l_element_precedent = NULL;
Line 357  retrait_thread_surveillance(struct_proce Line 402  retrait_thread_surveillance(struct_proce
   
     if (l_element_courant == NULL)      if (l_element_courant == NULL)
     {      {
 #       ifndef SEMAPHORES_NOMMES          pthread_mutex_unlock(&mutex_liste_threads);
         sem_post(&semaphore_liste_threads);  
 #       else  
         sem_post(semaphore_liste_threads);  
 #       endif  
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
         sigpending(&set);  
   
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
Line 378  retrait_thread_surveillance(struct_proce Line 416  retrait_thread_surveillance(struct_proce
         (*l_element_precedent).suivant = (*l_element_courant).suivant;          (*l_element_precedent).suivant = (*l_element_courant).suivant;
     }      }
   
     if (pthread_mutex_lock(&((*s_argument_thread).mutex)) != 0)      if (pthread_mutex_lock(&((*s_argument_thread).mutex_nombre_references))
               != 0)
     {      {
 #       ifndef SEMAPHORES_NOMMES          pthread_mutex_unlock(&mutex_liste_threads);
         sem_post(&semaphore_liste_threads);  
 #       else  
         sem_post(semaphore_liste_threads);  
 #       endif  
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
         sigpending(&set);  
   
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
Line 400  retrait_thread_surveillance(struct_proce Line 432  retrait_thread_surveillance(struct_proce
   
     if ((*s_argument_thread).nombre_references == 0)      if ((*s_argument_thread).nombre_references == 0)
     {      {
         if (pthread_mutex_unlock(&((*s_argument_thread).mutex)) != 0)          if (pthread_mutex_unlock(&((*s_argument_thread)
                   .mutex_nombre_references)) != 0)
         {          {
 #           ifndef SEMAPHORES_NOMMES              pthread_mutex_unlock(&mutex_liste_threads);
             sem_post(&semaphore_liste_threads);  
 #           else  
             sem_post(semaphore_liste_threads);  
 #           endif  
             pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
             sigpending(&set);  
   
             (*s_etat_processus).erreur_systeme = d_es_processus;              (*s_etat_processus).erreur_systeme = d_es_processus;
             return;              return;
         }          }
   
         pthread_mutex_destroy(&((*s_argument_thread).mutex));          pthread_mutex_destroy(&((*s_argument_thread).mutex));
           pthread_mutex_destroy(&((*s_argument_thread).mutex_nombre_references));
         free(s_argument_thread);          free(s_argument_thread);
     }      }
     else      else
     {      {
         if (pthread_mutex_unlock(&((*s_argument_thread).mutex)) != 0)          if (pthread_mutex_unlock(&((*s_argument_thread)
                   .mutex_nombre_references)) != 0)
         {          {
 #           ifndef SEMAPHORES_NOMMES              pthread_mutex_unlock(&mutex_liste_threads);
             sem_post(&semaphore_liste_threads);  
 #           else  
             sem_post(semaphore_liste_threads);  
 #           endif  
             pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
             sigpending(&set);  
   
             (*s_etat_processus).erreur_systeme = d_es_processus;              (*s_etat_processus).erreur_systeme = d_es_processus;
             return;              return;
         }          }
     }      }
   
 #   ifndef SEMAPHORES_NOMMES      if (pthread_mutex_unlock(&mutex_liste_threads) != 0)
     if (sem_post(&semaphore_liste_threads) != 0)  
 #   else  
     if (sem_post(semaphore_liste_threads) != 0)  
 #   endif  
     {      {
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
         sigpending(&set);  
   
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
   
     free((struct_liste_chainee_volatile *) l_element_courant);      free((struct_liste_chainee_volatile *) l_element_courant);
   
     pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
     sigpending(&set);  
   
     return;      return;
 }  }
   
Line 460  verrouillage_threads_concurrents(struct_ Line 470  verrouillage_threads_concurrents(struct_
 {  {
     volatile struct_liste_chainee_volatile  *l_element_courant;      volatile struct_liste_chainee_volatile  *l_element_courant;
   
 #   ifndef SEMAPHORES_NOMMES      if (pthread_mutex_lock(&mutex_liste_threads) != 0)
     while(sem_wait(&semaphore_liste_threads) == -1)  
 #   else  
     while(sem_wait(semaphore_liste_threads) == -1)  
 #   endif  
     {      {
         if (errno != EINTR)          (*s_etat_processus).erreur_systeme = d_es_processus;
         {          return;
             (*s_etat_processus).erreur_systeme = d_es_processus;  
             return;  
         }  
     }      }
   
     l_element_courant = liste_threads;      l_element_courant = liste_threads;
Line 482  verrouillage_threads_concurrents(struct_ Line 485  verrouillage_threads_concurrents(struct_
                 (*l_element_courant).donnee)).tid, pthread_self()) == 0))                  (*l_element_courant).donnee)).tid, pthread_self()) == 0))
         {          {
 #           ifndef SEMAPHORES_NOMMES  #           ifndef SEMAPHORES_NOMMES
             while(sem_wait(&((*(*((struct_thread *) (*l_element_courant)                  while(sem_wait(&((*(*((struct_thread *) (*l_element_courant)
                     .donnee)).s_etat_processus).semaphore_fork)) == -1)                          .donnee)).s_etat_processus).semaphore_fork)) == -1)
 #           else  #           else
             while(sem_wait((*(*((struct_thread *) (*l_element_courant)                  while(sem_wait((*(*((struct_thread *) (*l_element_courant)
                     .donnee)).s_etat_processus).semaphore_fork) == -1)                          .donnee)).s_etat_processus).semaphore_fork) == -1)
 #           endif  #           endif
             {              {
                 if (errno != EINTR)                  (*s_etat_processus).erreur_systeme = d_es_processus;
                 {                  return;
                     (*s_etat_processus).erreur_systeme = d_es_processus;  
                     return;  
                 }  
             }              }
         }          }
   
Line 517  deverrouillage_threads_concurrents(struc Line 517  deverrouillage_threads_concurrents(struc
                 (*l_element_courant).donnee)).tid, pthread_self()) == 0))                  (*l_element_courant).donnee)).tid, pthread_self()) == 0))
         {          {
 #           ifndef SEMAPHORES_NOMMES  #           ifndef SEMAPHORES_NOMMES
             if (sem_post(&((*(*((struct_thread *)                  if (sem_post(&((*(*((struct_thread *)
                     (*l_element_courant).donnee)).s_etat_processus)                          (*l_element_courant).donnee)).s_etat_processus)
                     .semaphore_fork)) != 0)                          .semaphore_fork)) != 0)
 #           else  #           else
             if (sem_post((*(*((struct_thread *)                  if (sem_post((*(*((struct_thread *)
                     (*l_element_courant).donnee)).s_etat_processus)                          (*l_element_courant).donnee)).s_etat_processus)
                     .semaphore_fork) != 0)                          .semaphore_fork) != 0)
 #           endif  #           endif
             {              {
 #               ifndef SEMAPHORES_NOMMES                  if (pthread_mutex_unlock(&mutex_liste_threads) != 0)
                 if (sem_post(&semaphore_liste_threads) != 0)  
                 {  
                     (*s_etat_processus).erreur_systeme = d_es_processus;  
                     return;  
                 }  
 #               else  
                 if (sem_post(semaphore_liste_threads) != 0)  
                 {                  {
                     (*s_etat_processus).erreur_systeme = d_es_processus;                      (*s_etat_processus).erreur_systeme = d_es_processus;
                     return;                      return;
                 }                  }
 #               endif  
   
                 (*s_etat_processus).erreur_systeme = d_es_processus;                  (*s_etat_processus).erreur_systeme = d_es_processus;
                 return;                  return;
Line 548  deverrouillage_threads_concurrents(struc Line 540  deverrouillage_threads_concurrents(struc
         l_element_courant = (*l_element_courant).suivant;          l_element_courant = (*l_element_courant).suivant;
     }      }
   
 #   ifndef SEMAPHORES_NOMMES      if (pthread_mutex_unlock(&mutex_liste_threads) != 0)
     if (sem_post(&semaphore_liste_threads) != 0)  
 #   else  
     if (sem_post(semaphore_liste_threads) != 0)  
 #   endif  
     {      {
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
Line 566  liberation_threads(struct_processus *s_e Line 554  liberation_threads(struct_processus *s_e
 {  {
     logical1                                    suppression_variables_partagees;      logical1                                    suppression_variables_partagees;
   
     sigset_t                                    oldset;  
     sigset_t                                    set;  
   
     struct_descripteur_thread                   *s_argument_thread;      struct_descripteur_thread                   *s_argument_thread;
   
     struct_processus                            *candidat;      struct_processus                            *candidat;
   
     unsigned long                               i;      struct_liste_variables_partagees            *l_element_partage_courant;
       struct_liste_variables_partagees            *l_element_partage_suivant;
   
       struct_liste_variables_statiques            *l_element_statique_courant;
       struct_liste_variables_statiques            *l_element_statique_suivant;
   
       integer8                                    i;
   
     void                                        *element_candidat;      void                                        *element_candidat;
     void                                        *element_courant;      void                                        *element_courant;
Line 582  liberation_threads(struct_processus *s_e Line 573  liberation_threads(struct_processus *s_e
     volatile struct_liste_chainee_volatile      *l_element_courant;      volatile struct_liste_chainee_volatile      *l_element_courant;
     volatile struct_liste_chainee_volatile      *l_element_suivant;      volatile struct_liste_chainee_volatile      *l_element_suivant;
   
     sigfillset(&set);      if (pthread_mutex_lock(&mutex_liste_threads) == -1)
     pthread_sigmask(SIG_BLOCK, &set, &oldset);  
   
 #   ifndef SEMAPHORES_NOMMES  
     while(sem_wait(&semaphore_liste_threads) == -1)  
 #   else  
     while(sem_wait(semaphore_liste_threads) == -1)  
 #   endif  
     {      {
         if (errno != EINTR)          (*s_etat_processus).erreur_systeme = d_es_processus;
         {          return;
             pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
             (*s_etat_processus).erreur_systeme = d_es_processus;  
             return;  
         }  
     }      }
   
     l_element_courant = liste_threads;      l_element_courant = liste_threads;
Line 627  liberation_threads(struct_processus *s_e Line 607  liberation_threads(struct_processus *s_e
             close((*s_etat_processus).pipe_injections);              close((*s_etat_processus).pipe_injections);
             close((*s_etat_processus).pipe_nombre_injections);              close((*s_etat_processus).pipe_nombre_injections);
             close((*s_etat_processus).pipe_interruptions);              close((*s_etat_processus).pipe_interruptions);
             close((*s_etat_processus).pipe_nombre_objets_attente);              close((*s_etat_processus).pipe_nombre_elements_attente);
             close((*s_etat_processus).pipe_nombre_interruptions_attente);  
   
             liberation(s_etat_processus, (*s_etat_processus).at_exit);              liberation(s_etat_processus, (*s_etat_processus).at_exit);
   
Line 676  liberation_threads(struct_processus *s_e Line 655  liberation_threads(struct_processus *s_e
                 s_argument_thread = (struct_descripteur_thread *)                  s_argument_thread = (struct_descripteur_thread *)
                         (*((struct_liste_chainee *) element_courant)).donnee;                          (*((struct_liste_chainee *) element_courant)).donnee;
   
                 if (pthread_mutex_lock(&((*s_argument_thread).mutex)) != 0)                  if (pthread_mutex_lock(&((*s_argument_thread)
                           .mutex_nombre_references)) != 0)
                 {                  {
                     (*s_etat_processus).erreur_systeme = d_es_processus;                      (*s_etat_processus).erreur_systeme = d_es_processus;
                     sem_post(&semaphore_liste_threads);                      pthread_mutex_unlock(&mutex_liste_threads);
                     return;                      return;
                 }                  }
   
Line 695  liberation_threads(struct_processus *s_e Line 675  liberation_threads(struct_processus *s_e
                     close((*s_argument_thread).pipe_acquittement[1]);                      close((*s_argument_thread).pipe_acquittement[1]);
                     close((*s_argument_thread).pipe_injections[1]);                      close((*s_argument_thread).pipe_injections[1]);
                     close((*s_argument_thread).pipe_nombre_injections[1]);                      close((*s_argument_thread).pipe_nombre_injections[1]);
                     close((*s_argument_thread).pipe_nombre_objets_attente[0]);                      close((*s_argument_thread).pipe_nombre_elements_attente[0]);
                     close((*s_argument_thread).pipe_interruptions[0]);                      close((*s_argument_thread).pipe_interruptions[0]);
                     close((*s_argument_thread)  
                             .pipe_nombre_interruptions_attente[0]);  
   
                     if (pthread_mutex_unlock(&((*s_argument_thread).mutex))                      if (pthread_mutex_unlock(&((*s_argument_thread)
                             != 0)                              .mutex_nombre_references)) != 0)
                     {                      {
                         (*s_etat_processus).erreur_systeme = d_es_processus;                          (*s_etat_processus).erreur_systeme = d_es_processus;
                         sem_post(&semaphore_liste_threads);                          pthread_mutex_unlock(&mutex_liste_threads);
                         return;                          return;
                     }                      }
   
                     pthread_mutex_destroy(&((*s_argument_thread).mutex));                      pthread_mutex_destroy(&((*s_argument_thread).mutex));
                       pthread_mutex_destroy(&((*s_argument_thread)
                               .mutex_nombre_references));
   
                     if ((*s_argument_thread).processus_detache == d_faux)                      if ((*s_argument_thread).processus_detache == d_faux)
                     {                      {
Line 723  liberation_threads(struct_processus *s_e Line 703  liberation_threads(struct_processus *s_e
                 }                  }
                 else                  else
                 {                  {
                     if (pthread_mutex_unlock(&((*s_argument_thread).mutex))                      if (pthread_mutex_unlock(&((*s_argument_thread)
                             != 0)                              .mutex_nombre_references)) != 0)
                     {                      {
                         (*s_etat_processus).erreur_systeme = d_es_processus;                          (*s_etat_processus).erreur_systeme = d_es_processus;
                         sem_post(&semaphore_liste_threads);                          pthread_mutex_unlock(&mutex_liste_threads);
                         return;                          return;
                     }                      }
                 }                  }
Line 796  liberation_threads(struct_processus *s_e Line 776  liberation_threads(struct_processus *s_e
                 }                  }
             }              }
   
             for(i = 0; i < (*s_etat_processus).nombre_variables; i++)  
             {  
                 pthread_mutex_trylock(&((*(*s_etat_processus)  
                         .s_liste_variables[i].objet).mutex));  
                 pthread_mutex_unlock(&((*(*s_etat_processus)  
                         .s_liste_variables[i].objet).mutex));  
   
                 // Les variables de niveau 0 sont des définitions qui  
                 // ne sont pas copiées entre threads.  
                 if ((*s_etat_processus).s_liste_variables[i].niveau > 0)  
                 {  
                     liberation(s_etat_processus,  
                             (*s_etat_processus).s_liste_variables[i].objet);  
                 }  
   
                 free((*s_etat_processus).s_liste_variables[i].nom);  
             }  
   
             free((*s_etat_processus).s_liste_variables);  
   
             for(i = 0; i < (*s_etat_processus).nombre_variables_statiques; i++)  
             {  
                 pthread_mutex_trylock(&((*(*s_etat_processus)  
                         .s_liste_variables_statiques[i].objet).mutex));  
                 pthread_mutex_unlock(&((*(*s_etat_processus)  
                         .s_liste_variables_statiques[i].objet).mutex));  
   
                 liberation(s_etat_processus, (*s_etat_processus)  
                         .s_liste_variables_statiques[i].objet);  
                 free((*s_etat_processus).s_liste_variables_statiques[i].nom);  
             }  
   
             free((*s_etat_processus).s_liste_variables_statiques);  
   
             // Ne peut être effacé qu'une seule fois              // Ne peut être effacé qu'une seule fois
             if (suppression_variables_partagees == d_faux)              if (suppression_variables_partagees == d_faux)
             {              {
                 suppression_variables_partagees = d_vrai;                  suppression_variables_partagees = d_vrai;
   
                 for(i = 0; i < (*(*s_etat_processus)                  liberation_arbre_variables_partagees(s_etat_processus,
                         .s_liste_variables_partagees).nombre_variables; i++)                          (*(*s_etat_processus).s_arbre_variables_partagees));
                 {                  (*(*s_etat_processus).s_arbre_variables_partagees) = NULL;
                     pthread_mutex_trylock(&((*(*(*s_etat_processus)  
                             .s_liste_variables_partagees).table[i].objet)  
                             .mutex));  
                     pthread_mutex_unlock(&((*(*(*s_etat_processus)  
                             .s_liste_variables_partagees).table[i].objet)  
                             .mutex));  
   
                     liberation(s_etat_processus, (*(*s_etat_processus)                  l_element_partage_courant = (*(*s_etat_processus)
                             .s_liste_variables_partagees).table[i].objet);                          .l_liste_variables_partagees);
                     free((*(*s_etat_processus).s_liste_variables_partagees)  
                             .table[i].nom);  
                 }  
   
                 if ((*(*s_etat_processus).s_liste_variables_partagees).table                  while(l_element_partage_courant != NULL)
                         != NULL)  
                 {                  {
                     free((struct_variable_partagee *) (*(*s_etat_processus)                      l_element_partage_suivant =
                             .s_liste_variables_partagees).table);                              (*l_element_partage_courant).suivant;
                       free(l_element_partage_courant);
                       l_element_partage_courant = l_element_partage_suivant;
                 }                  }
   
                 pthread_mutex_trylock(&((*(*s_etat_processus)                  (*(*s_etat_processus).l_liste_variables_partagees) = NULL;
                         .s_liste_variables_partagees).mutex));              }
                 pthread_mutex_unlock(&((*(*s_etat_processus)  
                         .s_liste_variables_partagees).mutex));              liberation_arbre_variables(s_etat_processus,
                       (*s_etat_processus).s_arbre_variables, d_faux);
   
               l_element_statique_courant = (*s_etat_processus)
                       .l_liste_variables_statiques;
   
               while(l_element_statique_courant != NULL)
               {
                   l_element_statique_suivant =
                       (*l_element_statique_courant).suivant;
                   free(l_element_statique_courant);
                   l_element_statique_courant = l_element_statique_suivant;
             }              }
   
             element_courant = (*s_etat_processus).l_base_pile;              element_courant = (*s_etat_processus).l_base_pile;
Line 1321  liberation_threads(struct_processus *s_e Line 1270  liberation_threads(struct_processus *s_e
             liberation_allocateur(s_etat_processus);              liberation_allocateur(s_etat_processus);
   
 #           ifndef SEMAPHORES_NOMMES  #           ifndef SEMAPHORES_NOMMES
             sem_post(&((*s_etat_processus).semaphore_fork));                  sem_post(&((*s_etat_processus).semaphore_fork));
             sem_destroy(&((*s_etat_processus).semaphore_fork));                  sem_destroy(&((*s_etat_processus).semaphore_fork));
 #           else  #           else
             sem_post((*s_etat_processus).semaphore_fork);                  sem_post((*s_etat_processus).semaphore_fork);
             sem_destroy2((*s_etat_processus).semaphore_fork, sem_fork);                  sem_close((*s_etat_processus).semaphore_fork);
 #           endif  #           endif
   
             free(s_etat_processus);              liberation_contexte_cas(s_etat_processus);
               liberation_allocateur_buffer(s_etat_processus);
               sys_free(s_etat_processus);
   
             s_etat_processus = candidat;              s_etat_processus = candidat;
         }          }
Line 1350  liberation_threads(struct_processus *s_e Line 1301  liberation_threads(struct_processus *s_e
         s_argument_thread = (struct_descripteur_thread *)          s_argument_thread = (struct_descripteur_thread *)
                 (*l_element_courant).donnee;                  (*l_element_courant).donnee;
   
         if (pthread_mutex_lock(&((*s_argument_thread).mutex)) != 0)          if (pthread_mutex_lock(&((*s_argument_thread).mutex_nombre_references))
                   != 0)
         {          {
             (*s_etat_processus).erreur_systeme = d_es_processus;              (*s_etat_processus).erreur_systeme = d_es_processus;
             sem_post(&semaphore_liste_threads);              pthread_mutex_unlock(&mutex_liste_threads);
             return;              return;
         }          }
   
Line 1369  liberation_threads(struct_processus *s_e Line 1321  liberation_threads(struct_processus *s_e
             close((*s_argument_thread).pipe_acquittement[1]);              close((*s_argument_thread).pipe_acquittement[1]);
             close((*s_argument_thread).pipe_injections[1]);              close((*s_argument_thread).pipe_injections[1]);
             close((*s_argument_thread).pipe_nombre_injections[1]);              close((*s_argument_thread).pipe_nombre_injections[1]);
             close((*s_argument_thread).pipe_nombre_objets_attente[0]);              close((*s_argument_thread).pipe_nombre_elements_attente[0]);
             close((*s_argument_thread).pipe_interruptions[0]);              close((*s_argument_thread).pipe_interruptions[0]);
             close((*s_argument_thread).pipe_nombre_interruptions_attente[0]);  
   
             if (pthread_mutex_unlock(&((*s_argument_thread).mutex)) != 0)              if (pthread_mutex_unlock(&((*s_argument_thread)
                       .mutex_nombre_references)) != 0)
             {              {
                 (*s_etat_processus).erreur_systeme = d_es_processus;                  (*s_etat_processus).erreur_systeme = d_es_processus;
                 sem_post(&semaphore_liste_threads);                  pthread_mutex_unlock(&mutex_liste_threads);
                 return;                  return;
             }              }
   
             pthread_mutex_destroy(&((*s_argument_thread).mutex));              pthread_mutex_destroy(&((*s_argument_thread).mutex));
               pthread_mutex_destroy(&((*s_argument_thread)
                       .mutex_nombre_references));
   
             if ((*s_argument_thread).processus_detache == d_faux)              if ((*s_argument_thread).processus_detache == d_faux)
             {              {
Line 1394  liberation_threads(struct_processus *s_e Line 1348  liberation_threads(struct_processus *s_e
         }          }
         else          else
         {          {
             if (pthread_mutex_unlock(&((*s_argument_thread).mutex)) != 0)              if (pthread_mutex_unlock(&((*s_argument_thread)
                       .mutex_nombre_references)) != 0)
             {              {
                 (*s_etat_processus).erreur_systeme = d_es_processus;                  (*s_etat_processus).erreur_systeme = d_es_processus;
                 sem_post(&semaphore_liste_threads);                  pthread_mutex_unlock(&mutex_liste_threads);
                 return;                  return;
             }              }
         }          }
Line 1409  liberation_threads(struct_processus *s_e Line 1364  liberation_threads(struct_processus *s_e
   
     liste_threads_surveillance = NULL;      liste_threads_surveillance = NULL;
   
 #   ifndef SEMAPHORES_NOMMES      if (pthread_mutex_unlock(&mutex_liste_threads) != 0)
     if (sem_post(&semaphore_liste_threads) != 0)  
 #   else  
     if (sem_post(semaphore_liste_threads) != 0)  
 #   endif  
     {      {
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
   
     pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
     sigpending(&set);  
     return;      return;
 }  }
   
Line 1432  recherche_thread(pid_t pid, pthread_t ti Line 1380  recherche_thread(pid_t pid, pthread_t ti
   
     struct_processus                            *s_etat_processus;      struct_processus                            *s_etat_processus;
   
       if (pthread_mutex_lock(&mutex_liste_threads) != 0)
       {
           return(NULL);
       }
   
     l_element_courant = liste_threads;      l_element_courant = liste_threads;
   
     while(l_element_courant != NULL)      while(l_element_courant != NULL)
Line 1452  recherche_thread(pid_t pid, pthread_t ti Line 1405  recherche_thread(pid_t pid, pthread_t ti
          * Le processus n'existe plus. On ne distribue aucun signal.           * Le processus n'existe plus. On ne distribue aucun signal.
          */           */
   
           pthread_mutex_unlock(&mutex_liste_threads);
         return(NULL);          return(NULL);
     }      }
   
     s_etat_processus = (*((struct_thread *)      s_etat_processus = (*((struct_thread *)
             (*l_element_courant).donnee)).s_etat_processus;              (*l_element_courant).donnee)).s_etat_processus;
   
       if (pthread_mutex_unlock(&mutex_liste_threads) != 0)
       {
           return(NULL);
       }
   
     return(s_etat_processus);      return(s_etat_processus);
 }  }
   
 static logical1  static struct_processus *
 recherche_thread_principal(pid_t pid, pthread_t *thread)  recherche_thread_principal(pid_t pid)
 {  {
     volatile struct_liste_chainee_volatile      *l_element_courant;      volatile struct_liste_chainee_volatile      *l_element_courant;
   
Line 1486  recherche_thread_principal(pid_t pid, pt Line 1445  recherche_thread_principal(pid_t pid, pt
          * Le processus n'existe plus. On ne distribue aucun signal.           * Le processus n'existe plus. On ne distribue aucun signal.
          */           */
   
         return(d_faux);          return(NULL);
     }      }
   
     (*thread) = (*((struct_thread *) (*l_element_courant).donnee)).tid;      return((*((struct_thread *) (*l_element_courant).donnee))
               .s_etat_processus);
     return(d_vrai);  
 }  }
   
   
Line 1512  recherche_thread_principal(pid_t pid, pt Line 1470  recherche_thread_principal(pid_t pid, pt
 // les sémaphores sont déjà bloqués par un gestionnaire de signal.  // les sémaphores sont déjà bloqués par un gestionnaire de signal.
   
 static inline void  static inline void
 verrouillage_gestionnaire_signaux()  verrouillage_gestionnaire_signaux(struct_processus *s_etat_processus)
 {  {
     int         semaphore;  #   ifndef SEMAPHORES_NOMMES
       if (sem_post(&((*s_etat_processus).semaphore_fork)) != 0)
     sigset_t    oldset;  #   else
     sigset_t    set;      if (sem_post((*s_etat_processus).semaphore_fork) != 0)
   #   endif
     sem_t       *sem;  
   
     if ((sem = pthread_getspecific(semaphore_fork_processus_courant))  
             != NULL)  
     {      {
         if (sem_post(sem) != 0)          BUG(1, uprintf("Lock error !\n"));
         {          return;
             BUG(1, uprintf("Lock error !\n"));  
             return;  
         }  
     }      }
   
     // Il faut respecteur l'atomicité des deux opérations suivantes !      return;
   }
     sigfillset(&set);  
     pthread_sigmask(SIG_BLOCK, &set, &oldset);  
   
   static inline void
   deverrouillage_gestionnaire_signaux(struct_processus *s_etat_processus)
   {
 #   ifndef SEMAPHORES_NOMMES  #   ifndef SEMAPHORES_NOMMES
     while(sem_wait(&semaphore_gestionnaires_signaux_atomique) == -1)      while(sem_wait(&((*s_etat_processus).semaphore_fork)) != 0)
 #   else  #   else
     while(sem_wait(semaphore_gestionnaires_signaux_atomique) == -1)      while(sem_wait((*s_etat_processus).semaphore_fork) != 0)
 #   endif  #   endif
     {      {
         if (errno != EINTR)          if (errno != EINTR)
         {          {
             pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
             BUG(1, uprintf("Unlock error !\n"));              BUG(1, uprintf("Unlock error !\n"));
             return;              return;
         }          }
     }      }
   
 #   ifndef SEMAPHORES_NOMMES      return;
     if (sem_post(&semaphore_gestionnaires_signaux) == -1)  }
 #   else  
     if (sem_post(semaphore_gestionnaires_signaux) == -1)  /*
 #   endif  ================================================================================
     Fonctions de gestion des signaux dans les threads.
   
     Lorsqu'un processus reçoit un signal, il appelle le gestionnaire de signal
     associé qui ne fait qu'envoyer au travers de write() le signal
     reçus dans un pipe. Un second thread est bloqué sur ce pipe et
     effectue le traitement adéquat pour le signal donné.
   ================================================================================
   */
   
   #define test_signal(signal) \
       if (signal_test == SIGTEST) { signal_test = signal; return; }
   
   static int          pipe_signaux;
   
   logical1
   lancement_thread_signaux(struct_processus *s_etat_processus)
   {
       pthread_attr_t                  attributs;
   
       if (pipe((*s_etat_processus).pipe_signaux) != 0)
     {      {
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);          (*s_etat_processus).erreur_systeme = d_es_processus;
         BUG(1, uprintf("Lock error !\n"));          return(d_erreur);
         return;  
     }      }
   
 #   ifndef SEMAPHORES_NOMMES      pipe_signaux = (*s_etat_processus).pipe_signaux[1];
     if (sem_getvalue(&semaphore_gestionnaires_signaux, &semaphore) != 0)  
 #   else      if (pthread_attr_init(&attributs) != 0)
     if (sem_getvalue(semaphore_gestionnaires_signaux, &semaphore) != 0)  
 #   endif  
     {      {
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);          (*s_etat_processus).erreur_systeme = d_es_processus;
         BUG(1, uprintf("Lock error !\n"));          return(d_erreur);
         return;  
     }      }
   
 #   ifndef SEMAPHORES_NOMMES      if (pthread_attr_setdetachstate(&attributs, PTHREAD_CREATE_JOINABLE) != 0)
     if (sem_post(&semaphore_gestionnaires_signaux_atomique) != 0)  
 #   else  
     if (sem_post(semaphore_gestionnaires_signaux_atomique) != 0)  
 #   endif  
     {      {
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);          (*s_etat_processus).erreur_systeme = d_es_processus;
         BUG(1, uprintf("Unlock error !\n"));          return(d_erreur);
         return;  
     }      }
   
     if (semaphore == 1)      if (pthread_create(&((*s_etat_processus).thread_signaux), &attributs,
               thread_signaux, s_etat_processus) != 0)
     {      {
         // Le semaphore ne peut être pris par le thread qui a appelé          (*s_etat_processus).erreur_systeme = d_es_processus;
         // le gestionnaire de signal car le signal est bloqué par ce thread          return(d_erreur);
         // dans les zones critiques. Ce sémaphore ne peut donc être bloqué que      }
         // par un thread concurrent. On essaye donc de le bloquer jusqu'à  
         // ce que ce soit possible.  
   
 #       ifndef SEMAPHORES_NOMMES      if (pthread_attr_destroy(&attributs) != 0)
         while(sem_trywait(&semaphore_liste_threads) == -1)      {
 #       else          (*s_etat_processus).erreur_systeme = d_es_processus;
         while(sem_trywait(semaphore_liste_threads) == -1)          return(d_erreur);
 #       endif      }
         {  
             if ((errno != EINTR) && (errno != EAGAIN))  
             {  
                 pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
   
                 while(sem_wait(sem) == -1)      return(d_absence_erreur);
                 {  }
                     if (errno != EINTR)  
                     {  
                         BUG(1, uprintf("Lock error !\n"));  
                         return;  
                     }  
                 }  
   
                 BUG(1, uprintf("Lock error !\n"));  logical1
                 return;  arret_thread_signaux(struct_processus *s_etat_processus)
             }  {
       unsigned char       signal;
       ssize_t             n;
   
       signal = (unsigned char ) (rpl_sigmax & 0xFF);
   
       do
       {
           n = write_atomic(s_etat_processus, (*s_etat_processus).pipe_signaux[1],
                   &signal, sizeof(signal));
   
             sched_yield();          if (n < 0)
           {
               return(d_erreur);
         }          }
     }      } while(n != 1);
   
     pthread_sigmask(SIG_SETMASK, &oldset, NULL);      pthread_join((*s_etat_processus).thread_signaux, NULL);
     sigpending(&set);  
   
     return;      close((*s_etat_processus).pipe_signaux[1]);
       return(d_absence_erreur);
 }  }
   
 static inline void  void *
 deverrouillage_gestionnaire_signaux()  thread_signaux(void *argument)
 {  {
     int         semaphore;      int                     *pipe;
   
     sem_t       *sem;  
   
     sigset_t    oldset;      sigset_t                masque;
     sigset_t    set;  
   
     // Il faut respecteur l'atomicité des deux opérations suivantes !      struct pollfd           fds;
   
     sigfillset(&set);      struct_processus        *s_etat_processus;
     pthread_sigmask(SIG_BLOCK, &set, &oldset);  
   
 #   ifndef SEMAPHORES_NOMMES      unsigned char           signal;
     while(sem_wait(&semaphore_gestionnaires_signaux_atomique) == -1)  
 #   else  
     while(sem_wait(semaphore_gestionnaires_signaux_atomique) == -1)  
 #   endif  
     {  
         if (errno != EINTR)  
         {  
             pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
             BUG(1, uprintf("Unlock error !\n"));  
             return;  
         }  
     }  
   
 #   ifndef SEMAPHORES_NOMMES      s_etat_processus = (struct_processus *) argument;
     if (sem_getvalue(&semaphore_gestionnaires_signaux, &semaphore) != 0)      pipe = (*s_etat_processus).pipe_signaux;
 #   else      fds.fd = pipe[0];
     if (sem_getvalue(semaphore_gestionnaires_signaux, &semaphore) != 0)      fds.events = POLLIN;
 #   endif  
     {  
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
         BUG(1, uprintf("Unlock error !\n"));  
         return;  
     }  
   
 #   ifndef SEMAPHORES_NOMMES      sigfillset(&masque);
     while(sem_wait(&semaphore_gestionnaires_signaux) == -1)      pthread_sigmask(SIG_BLOCK, &masque, NULL);
 #   else  
     while(sem_wait(semaphore_gestionnaires_signaux) == -1)  
 #   endif  
     {  
         if (errno != EINTR)  
         {  
             pthread_sigmask(SIG_SETMASK, &oldset, NULL);  
             BUG(1, uprintf("Unlock error !\n"));  
             return;  
         }  
     }  
   
 #   ifndef SEMAPHORES_NOMMES      do
     if (sem_post(&semaphore_gestionnaires_signaux_atomique) != 0)  
 #   else  
     if (sem_post(semaphore_gestionnaires_signaux_atomique) != 0)  
 #   endif  
     {      {
         pthread_sigmask(SIG_SETMASK, &oldset, NULL);          fds.revents = 0;
         BUG(1, uprintf("Unlock error !\n"));  
         return;  
     }  
   
     if ((sem = pthread_getspecific(semaphore_fork_processus_courant))          while(poll(&fds, 1, -1) == -1)
             != NULL)  
     {  
         while(sem_wait(sem) == -1)  
         {          {
             if (errno != EINTR)              if (errno != EINTR)
             {              {
                 pthread_sigmask(SIG_SETMASK, &oldset, NULL);                  close((*s_etat_processus).pipe_signaux[0]);
                 BUG(1, uprintf("Unlock error !\n"));                  pthread_exit(NULL);
                 return;  
             }              }
         }          }
     }  
   
     if (semaphore == 1)          if (read_atomic(s_etat_processus, fds.fd, &signal, 1) != 1)
     {  
 #       ifndef SEMAPHORES_NOMMES  
         if (sem_post(&semaphore_liste_threads) != 0)  
 #       else  
         if (sem_post(semaphore_liste_threads) != 0)  
 #       endif  
         {          {
             pthread_sigmask(SIG_SETMASK, &oldset, NULL);              close((*s_etat_processus).pipe_signaux[0]);
               pthread_exit(NULL);
             BUG(1, uprintf("Unlock error !\n"));  
             return;  
         }          }
     }  
   
     pthread_sigmask(SIG_SETMASK, &oldset, NULL);          if (signal != (0xFF & rpl_sigmax))
     sigpending(&set);          {
               envoi_signal_processus(getpid(), signal, d_faux);
               // Un signal SIGALRM est envoyé par le thread de surveillance
               // des signaux jusqu'à ce que les signaux soient tous traités.
           }
       } while(signal != (0xFF & rpl_sigmax));
   
     return;      close((*s_etat_processus).pipe_signaux[0]);
       pthread_exit(NULL);
 }  }
   
 #ifdef _BROKEN_SIGINFO  
   
 static int              *fifos;  
 static int              segment;  
 static int              segment_mutexes;  
 static int              longueur_queue;  
 static int              nombre_queues;  
   
 static pthread_mutex_t  *mutexes;  
   
 static unsigned char    *chemin = NULL;  static inline void
   _write(int fd, const void *buf, size_t count)
 unsigned char *  
 nom_segment(unsigned char *chemin, pid_t pid)  
 {  {
     unsigned char               *fichier;      ssize_t         ios;
   
     if ((fichier = malloc((strlen(chemin) + 1 + 256 + 1) *      while((ios = write(fd, buf, count)) == -1)
             sizeof(unsigned char))) == NULL)  
     {      {
         return(NULL);          if (errno != EINTR)
           {
               break;
           }
     }      }
   
     sprintf(fichier, "%s/RPL-SIGQUEUES-%d", chemin, (int) pid);      return;
   
     return(fichier);  
 }  }
   
 unsigned char *  
 nom_segment_mutexes(unsigned char *chemin, pid_t pid)  
 {  
     unsigned char               *fichier;  
   
     if ((fichier = malloc((strlen(chemin) + 1 + 256 + 1) *  // Récupération des signaux
             sizeof(unsigned char))) == NULL)  // - SIGINT  (arrêt au clavier)
     {  // - SIGTERM (signal d'arrêt en provenance du système)
         return(NULL);  
     }  
   
     sprintf(fichier, "%s/RPL-SIGMUTEXES-%d", chemin, (int) pid);  void
   interruption1(int signal)
   {
       unsigned char       signal_tronque;
   
     return(fichier);      test_signal(signal);
 }  
   
 int  
 queue_de_signal(int signal)  
 {  
     switch(signal)      switch(signal)
     {      {
         case SIGINT:          case SIGINT:
             BUG(1, uprintf("SIGINT is not queued as it does not "              signal_tronque = (unsigned char) (rpl_sigint & 0xFF);
                     "come from program itself !\n"));              _write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
             return(0);              break;
         case SIGTSTP:  
             return(1);          case SIGTERM:
         case SIGCONT:              signal_tronque = (unsigned char) (rpl_sigterm & 0xFF);
             return(2);              _write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
         case SIGURG:              break;
             return(3);  
         case SIGPIPE:          case SIGUSR1:
             return(4);              signal_tronque = (unsigned char) (rpl_sigalrm & 0xFF);
         case SIGALRM:              _write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
             return(5);              break;
         case SIGFSTOP:  
             return(6);          default:
         case SIGSTART:              // SIGALRM
             return(7);              break;
         case SIGINJECT:  
             return(8);  
         case SIGABORT:  
             return(9);  
         case SIGFABORT:  
             return(10);  
     }      }
   
     return(-1);      return;
 }  }
   
   // Récupération des signaux
   // - SIGFSTP
   //
   // ATTENTION :
   // Le signal SIGFSTP provient de la mort du processus de contrôle.
   // Sous certains systèmes (Linux...), la mort du terminal de contrôle
   // se traduit par l'envoi d'un SIGHUP au processus. Sur d'autres
   // (SunOS), le processus reçoit un SIGFSTP avec une structure siginfo
   // non initialisée (pointeur NULL) issue de TERMIO.
   
 void  void
 creation_fifos_signaux(struct_processus *s_etat_processus)  interruption2(int signal)
 {  {
     file                            *desc;      unsigned char       signal_tronque;
   
     int                             i;      test_signal(signal);
   
     key_t                           clef;      signal_tronque = (unsigned char) (rpl_sigtstp & 0xFF);
       _write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
   
     pthread_mutexattr_t             attributs_mutex;      return;
   }
     unsigned char                   *nom;  
   
     /*  void
      * Signaux utilisés  interruption3(int signal)
      * SIGINT, SIGTSTP, SIGCONT, SIGURG, SIGPIPE, SIGALRM, SIGFSTOP,  {
      * SIGSTART, SIGINJECT, SIGABORT, SIGFABORT      // Si on passe par ici, c'est qu'il est impossible de récupérer
      */      // l'erreur d'accès à la mémoire. On sort donc du programme quitte à
       // ce qu'il reste des processus orphelins.
   
     // Création d'un segment de données associé au PID du processus courant      unsigned char       message_1[] = "+++System : Uncaught access violation\n"
                                   "+++System : Aborting !\n";
       unsigned char       message_2[] = "+++System : Stack overflow\n"
                                   "+++System : Aborting !\n";
   
     chemin = (*s_etat_processus).chemin_fichiers_temporaires;      test_signal(signal);
   
     if ((nom = nom_segment((*s_etat_processus).chemin_fichiers_temporaires,      if (pid_processus_pere == getpid())
             getpid())) == NULL)  
     {      {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          kill(pid_processus_pere, SIGUSR1);
         return;  
     }      }
   
     /*  #   pragma GCC diagnostic push
      * Structure d'une queue  #   pragma GCC diagnostic ignored "-Wunused-result"
      * 0 : pointeur en lecture sur le premier emplacement libre (int)  
      * 1 : pointeur en écriture sur le premier emplacement à lire (int)  
      * 2 : longueur de la queue (int)  
      * 3 : éléments restants (int)  
      * 4 à 4 + (2) : queue (int)  
      * 5 : mutex  
      */  
   
     nombre_queues = 11;  
     longueur_queue = 256;  
   
     if ((desc = fopen(nom, "w")) == NULL)      if (signal != SIGUSR2)
     {      {
         (*s_etat_processus).erreur_systeme = d_es_erreur_fichier;          write(STDERR_FILENO, message_1, strlen(message_1));
         return;  
     }      }
       else
     fclose(desc);  
   
     if ((clef = ftok(nom, 1)) == -1)  
     {      {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          write(STDERR_FILENO, message_2, strlen(message_2));
         return;  
     }      }
   
     free(nom);  #   pragma GCC diagnostic pop
   
     if ((segment = shmget(clef,      _exit(EXIT_FAILURE);
             nombre_queues * (longueur_queue + 4) * sizeof(int),  }
             IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR)) == -1)  
     {  
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;  
         return;  
     }  
   
     fifos = shmat(segment, NULL, 0);  // Récupération des signaux
   // - SIGHUP
   
     if (((void *) fifos) == ((void *) -1))  void
     {  interruption4(int signal)
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;  {
         return;      unsigned char       signal_tronque;
     }  
   
     for(i = 0; i < nombre_queues; i++)      test_signal(signal);
     {  
         fifos[(i * (longueur_queue + 4))] = 0;  
         fifos[(i * (longueur_queue + 4)) + 1] = 0;  
         fifos[(i * (longueur_queue + 4)) + 2] = longueur_queue;  
         fifos[(i * (longueur_queue + 4)) + 3] = longueur_queue;  
     }  
   
     if ((nom = nom_segment_mutexes((*s_etat_processus)      signal_tronque = (unsigned char) (rpl_sighup & 0xFF);
             .chemin_fichiers_temporaires, getpid())) == NULL)      _write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
     {  
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;  
         return;  
     }  
   
     if ((desc = fopen(nom, "w")) == NULL)      return;
     {  }
         (*s_etat_processus).erreur_systeme = d_es_erreur_fichier;  
         return;  
     }  
   
     fclose(desc);  // Récupération des signaux
   // - SIGPIPE
   
     if ((clef = ftok(nom, 1)) == -1)  void
     {  interruption5(int signal)
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;  {
         return;      unsigned char       message[] = "+++System : SIGPIPE\n"
     }                                  "+++System : Aborting !\n";
       unsigned char       signal_tronque;
     free(nom);  
   
     if ((segment_mutexes = shmget(clef,      test_signal(signal);
             nombre_queues * sizeof(pthread_mutex_t),  
             IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR)) == -1)  
     {  
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;  
         return;  
     }  
   
     mutexes = shmat(segment_mutexes, NULL, 0);  #   pragma GCC diagnostic push
   #   pragma GCC diagnostic ignored "-Wunused-result"
   
     if (((void *) mutexes) == ((void *) -1))      if (pid_processus_pere == getpid())
     {      {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          signal_tronque = (unsigned char) (rpl_sigalrm & 0xFF);
         return;          _write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
     }      }
   
     /*      write(STDERR_FILENO, message, strlen(message));
      * Création et initialisation d'un mutex par queue. Ce mutex n'est pas  
      * dans le premier segment parce qu'il peut y avoir des problèmes  
      * d'alignements sur certaines architectures.  
      */  
   
     pthread_mutexattr_init(&attributs_mutex);  #   pragma GCC diagnostic pop
     pthread_mutexattr_settype(&attributs_mutex, PTHREAD_MUTEX_RECURSIVE);  
   
     for(i = 0; i < nombre_queues; i++)  
     {  
         pthread_mutex_init(&(mutexes[i]), &attributs_mutex);  
     }  
   
     pthread_mutexattr_destroy(&attributs_mutex);  
     return;      return;
 }  }
   
 void  inline static void
 liberation_fifos_signaux(struct_processus *s_etat_processus)  signal_alrm(struct_processus *s_etat_processus, pid_t pid)
 {  {
     if (shmdt(fifos) == -1)      struct_processus        *s_thread_principal;
   
       verrouillage_gestionnaire_signaux(s_etat_processus);
   
       if (pid == getpid())
     {      {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          // Si pid est égal à getpid(), le signal à traiter est issu
         return;          // du même processus que celui qui va le traiter, mais d'un thread
     }          // différent.
   
           if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)
           {
               printf("[%d] RPL/SIGALRM (thread %llu)\n", (int) getpid(),
                       (unsigned long long) pthread_self());
               fflush(stdout);
           }
   
     if (shmdt(mutexes) == -1)          if ((*s_etat_processus).pid_processus_pere != getpid())
           {
               // On n'est pas dans le processus père, on remonte le signal.
               envoi_signal_processus((*s_etat_processus).pid_processus_pere,
                       rpl_sigalrm, d_faux);
           }
           else
           {
               // On est dans le processus père, on effectue un arrêt d'urgence.
               (*s_etat_processus).var_volatile_alarme = -1;
               (*s_etat_processus).var_volatile_requete_arret = -1;
           }
       }
       else
     {      {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          // Le signal est issu d'un processus différent. On recherche le
         return;          // thread principal pour remonter le signal.
   
           if ((s_thread_principal = recherche_thread_principal(getpid()))
                   != NULL)
           {
               envoi_signal_contexte(s_thread_principal, rpl_sigalrm);
           }
     }      }
   
       deverrouillage_gestionnaire_signaux(s_etat_processus);
     return;      return;
 }  }
   
 void  inline static void
 destruction_fifos_signaux(struct_processus *s_etat_processus)  signal_term(struct_processus *s_etat_processus, pid_t pid)
 {  {
     int                 i;      struct_processus        *s_thread_principal;
       pthread_mutex_t         exclusion = PTHREAD_MUTEX_INITIALIZER;
   
     unsigned char       *nom;      verrouillage_gestionnaire_signaux(s_etat_processus);
   
     if (shmdt(fifos) == -1)      if (pid == getpid())
     {      {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)
         return;          {
     }              printf("[%d] RPL/SIGTERM (thread %llu)\n", (int) getpid(),
                       (unsigned long long) pthread_self());
               fflush(stdout);
           }
   
     if (shmctl(segment, IPC_RMID, 0) == -1)          if ((*s_etat_processus).pid_processus_pere != getpid())
     {          {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;              envoi_signal_processus((*s_etat_processus).pid_processus_pere,
         return;                      rpl_sigterm, d_faux);
     }          }
           else
           {
               (*s_etat_processus).var_volatile_traitement_sigint = -1;
   
     for(i = 0; i < nombre_queues; i++)              pthread_mutex_lock(&exclusion);
     {  
         pthread_mutex_destroy(&(mutexes[i]));  
     }  
   
     if (shmdt(mutexes) == -1)              if ((*s_etat_processus).var_volatile_requete_arret == -1)
     {              {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;                  deverrouillage_gestionnaire_signaux(s_etat_processus);
         return;                  pthread_mutex_unlock(&exclusion);
     }                  return;
               }
   
     if (shmctl(segment_mutexes, IPC_RMID, 0) == -1)              (*s_etat_processus).var_volatile_requete_arret = -1;
     {              (*s_etat_processus).var_volatile_alarme = -1;
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;  
         return;  
     }  
   
     if ((nom = nom_segment_mutexes((*s_etat_processus)              pthread_mutex_unlock(&exclusion);
             .chemin_fichiers_temporaires, getpid())) == NULL)          }
     {  
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;  
         return;  
     }      }
       else
     unlink(nom);  
     free(nom);  
   
     if ((nom = nom_segment((*s_etat_processus).chemin_fichiers_temporaires,  
             getpid())) == NULL)  
     {      {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          if ((s_thread_principal = recherche_thread_principal(getpid()))
         return;                  != NULL)
           {
               envoi_signal_contexte(s_thread_principal, rpl_sigterm);
           }
     }      }
   
     unlink(nom);      deverrouillage_gestionnaire_signaux(s_etat_processus);
     free(nom);  
   
     return;      return;
 }  }
   
 int  inline static void
 queue_in(pid_t pid, int signal)  signal_int(struct_processus *s_etat_processus, pid_t pid)
 {  {
     int             *base;      struct_processus        *s_thread_principal;
     int             *buffer;      volatile sig_atomic_t   exclusion = 0;
     int             *projection_fifos;  
     int             queue;  
     int             identifiant;  
   
     key_t           clef;  
   
     pthread_mutex_t *projection_mutexes;  
   
     unsigned char   *nom;      verrouillage_gestionnaire_signaux(s_etat_processus);
   
     queue = queue_de_signal(signal);      if (pid == getpid())
       {
           if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)
           {
               printf("[%d] RPL/SIGINT (thread %llu)\n", (int) getpid(),
                       (unsigned long long) pthread_self());
               fflush(stdout);
           }
   
     // Ouverture des projections          if ((*s_etat_processus).pid_processus_pere != getpid())
           {
               envoi_signal_processus((*s_etat_processus).pid_processus_pere,
                       rpl_sigint, d_faux);
           }
           else
           {
               (*s_etat_processus).var_volatile_traitement_sigint = -1;
   
     if ((nom = nom_segment(chemin, pid)) == NULL)              while(exclusion == 1);
     {              exclusion = 1;
         return(-1);  
     }  
   
     if ((clef = ftok(nom, 1)) == -1)              if ((*s_etat_processus).var_volatile_requete_arret == -1)
     {              {
         free(nom);                  deverrouillage_gestionnaire_signaux(s_etat_processus);
         return(-1);                  exclusion = 0;
     }                  return;
               }
   
     free(nom);              if ((*s_etat_processus).langue == 'F')
               {
                   printf("+++Interruption\n");
               }
               else
               {
                   printf("+++Interrupt\n");
               }
   
     while((identifiant = shmget(clef,              fflush(stdout);
             nombre_queues * (longueur_queue + 4) * sizeof(int),  
             S_IRUSR | S_IWUSR)) == -1);  
   
     projection_fifos = shmat(identifiant, NULL, 0);              (*s_etat_processus).var_volatile_requete_arret = -1;
               (*s_etat_processus).var_volatile_alarme = -1;
   
     if ((nom = nom_segment_mutexes(chemin, pid)) == NULL)              exclusion = 0;
     {          }
         return(-1);  
     }      }
       else
     if ((clef = ftok(nom, 1)) == -1)  
     {      {
         free(nom);          if ((s_thread_principal = recherche_thread_principal(getpid()))
         return(-1);                  != NULL)
           {
               envoi_signal_contexte(s_thread_principal, rpl_sigint);
           }
     }      }
   
     free(nom);      deverrouillage_gestionnaire_signaux(s_etat_processus);
       return;
   }
   
     while((identifiant = shmget(clef,  static inline void
             nombre_queues * sizeof(pthread_mutex_t),  signal_tstp(struct_processus *s_etat_processus, pid_t pid)
             S_IRUSR | S_IWUSR)) == -1);  {
       struct_processus        *s_thread_principal;
   
     projection_mutexes = shmat(identifiant, NULL, 0);      verrouillage_gestionnaire_signaux(s_etat_processus);
   
     if (pthread_mutex_lock(&(projection_mutexes[queue])) != 0)      if (pid == getpid())
     {      {
         return(-1);          /*
            *  0 => fonctionnement normal
            * -1 => requête
            *  1 => requête acceptée en attente de traitement
            */
   
           if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)
           {
               printf("[%d] RPL/SIGTSTP (thread %llu)\n", (int) getpid(),
                       (unsigned long long) pthread_self());
               fflush(stdout);
           }
   
           if ((*s_etat_processus).var_volatile_processus_pere == 0)
           {
               envoi_signal_processus((*s_etat_processus).pid_processus_pere,
                       rpl_sigtstp, d_faux);
           }
           else
           {
               (*s_etat_processus).var_volatile_requete_arret2 = -1;
           }
     }      }
       else
       {
           // Envoi d'un signal au thread maître du groupe.
   
     base = &(projection_fifos[(longueur_queue + 4) * queue]);          if ((s_thread_principal = recherche_thread_principal(getpid()))
     buffer = &(base[4]);                  != NULL)
           {
               envoi_signal_contexte(s_thread_principal, rpl_sigtstp);
           }
       }
   
     // base[1] contient le prochain élément à écrire      deverrouillage_gestionnaire_signaux(s_etat_processus);
     buffer[base[1]++] = (int) pid;      return;
     base[1] %= base[2];  }
   
     // base[3] contient le nombre d'éléments non lus  static void
     if (base[3] <= 0)  sortie_interruption_depassement_pile(void *arg1, void *arg2, void *arg3)
   {
       switch((*((volatile int *) arg1)))
     {      {
         pthread_mutex_unlock(&(projection_mutexes[queue]));          case 1:
         shmdt(projection_mutexes);              longjmp(contexte_ecriture, -1);
         shmdt(projection_fifos);              break;
         return(-1);  
           case 2:
               longjmp(contexte_impression, -1);
               break;
     }      }
   
     base[3]--;      return;
   }
   
     if (pthread_mutex_unlock(&(projection_mutexes[queue])) != 0)  void
   interruption_depassement_pile(int urgence, stackoverflow_context_t scp)
   {
       if ((urgence == 0) && (routine_recursive != 0))
     {      {
         shmdt(projection_mutexes);          // On peut tenter de récupérer le dépassement de pile. Si la variable
         shmdt(projection_fifos);          // 'routine_recursive' est non nulle, on récupère l'erreur.
         return(-1);  
           sigsegv_leave_handler(sortie_interruption_depassement_pile,
                   (void *) &routine_recursive, NULL, NULL);
     }      }
   
     // Fermeture des projections      // Ici, la panique est totale et il vaut mieux quitter l'application.
     shmdt(projection_mutexes);      interruption3(SIGUSR2);
     shmdt(projection_fifos);      return;
     return(0);  
 }  }
   
 pid_t  int
 origine_signal(int signal)  interruption_violation_access(void *adresse_fautive, int gravite)
 {  {
     int             *base;      unsigned char       message[] = "+++System : Trying to catch access "
     int             *buffer;                                  "violation\n";
     int             pid;  
     int             queue;  
   
     queue = queue_de_signal(signal);      static int          compteur_erreur = 0;
   
     BUG(queue == -1, uprintf("[%d] Unknown signal %d in this context\n",      if ((gravite == 0) && (routine_recursive != 0))
             (int) getpid(), signal));      {
           // Il peut s'agir d'un dépassement de pile.
   
           sigsegv_leave_handler(sortie_interruption_depassement_pile,
                   (void *) &routine_recursive, NULL, NULL);
       }
   
     if (pthread_mutex_lock(&(mutexes[queue])) != 0)      // On est dans une bonne vieille violation d'accès. On essaie
       // de fermer au mieux l'application.
   
       compteur_erreur++;
   
       if (compteur_erreur >= 2)
     {      {
         return(-1);          // Erreurs multiples, on arrête l'application.
           interruption3(SIGSEGV);
           return(0);
     }      }
   
     base = &(fifos[(longueur_queue + 4) * queue]);  #   pragma GCC diagnostic push
     buffer = &(base[4]);  #   pragma GCC diagnostic ignored "-Wunused-result"
     pid = buffer[base[0]++];  
     base[0] %= base[2];      write(STDERR_FILENO, message, strlen(message));
     base[3]++;  
   
     if (base[3] > base[2])  #   pragma GCC diagnostic pop
   
       if (pid_processus_pere == getpid())
     {      {
         pthread_mutex_unlock(&(mutexes[queue]));          longjmp(contexte_initial, -1);
         return(-1);          return(1);
     }      }
     if (pthread_mutex_unlock(&(mutexes[queue])) != 0)      else
     {      {
         perror("unlock");          longjmp(contexte_processus, -1);
         return(-1);          return(1);
     }      }
   
     return((pid_t) pid);      // On renvoie 0 parce qu'on décline toute responsabilité quant à la
       // suite des événements...
       return(0);
 }  }
   
 #endif  // Traitement de rpl_sigstart
   
 void  static inline void
 interruption1(SIGHANDLER_ARGS)  signal_start(struct_processus *s_etat_processus, pid_t pid)
 {  {
     pid_t                   pid;      struct_processus        *s_thread_principal;
   
     pthread_t               thread;  
   
     struct_processus        *s_etat_processus;  
   
     volatile sig_atomic_t   exclusion = 0;      verrouillage_gestionnaire_signaux(s_etat_processus);
   
 #   ifdef _BROKEN_SIGINFO      if (pid == getpid())
     if (signal == SIGINT)  
     {      {
         // Si l'interruption provient du clavier, il n'y a pas eu d'appel          (*s_etat_processus).demarrage_fils = d_vrai;
         // à queue_in().  
   
         pid = getpid();  
     }      }
     else      else
     {      {
         pid = origine_signal(signal);          // Envoi d'un signal au thread maître du groupe.
     }  
 #   else  
     pid = (*siginfo).si_pid;  
 #   endif  
   
     verrouillage_gestionnaire_signaux();  
   
     switch(signal)          if ((s_thread_principal = recherche_thread_principal(getpid()))
     {                  != NULL)
         case SIGALRM :  
         {          {
             if (pid == getpid())              envoi_signal_contexte(s_thread_principal, rpl_sigstart);
             {  
                 if ((s_etat_processus = recherche_thread(getpid(),  
                         pthread_self())) == NULL)  
                 {  
                     deverrouillage_gestionnaire_signaux();  
                      return;  
                 }  
   
                 if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)  
                 {  
                     printf("[%d] SIGALRM (thread %llu)\n", (int) getpid(),  
                             (unsigned long long) pthread_self());  
                     fflush(stdout);  
                 }  
   
                 if ((*s_etat_processus).pid_processus_pere != getpid())  
                 {  
                     kill((*s_etat_processus).pid_processus_pere, signal);  
                 }  
                 else  
                 {  
                     (*s_etat_processus).var_volatile_alarme = -1;  
                     (*s_etat_processus).var_volatile_requete_arret = -1;  
                 }  
             }  
             else  
             {  
                 if (recherche_thread_principal(getpid(), &thread) == d_vrai)  
                 {  
                     pthread_kill(thread, signal);  
                 }  
             }  
   
             break;  
         }          }
       }
   
         case SIGINT :      deverrouillage_gestionnaire_signaux(s_etat_processus);
         {      return;
             /*  }
              * Une vieille spécification POSIX permet au pointeur siginfo  
              * d'être nul dans le cas d'un ^C envoyé depuis le clavier.  
              * Solaris suit en particulier cette spécification.  
              */  
   
 #           ifndef _BROKEN_SIGINFO  
             if (siginfo == NULL)  
             {  
                 kill(getpid(), signal);  
             }  
             else  
 #           endif  
             if (pid == getpid())  
             {  
                 if ((s_etat_processus = recherche_thread(getpid(),  
                         pthread_self())) == NULL)  
                 {  
                     deverrouillage_gestionnaire_signaux();  
                     return;  
                 }  
   
                 if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)  
                 {  
                     printf("[%d] SIGINT (thread %llu)\n", (int) getpid(),  
                             (unsigned long long) pthread_self());  
                     fflush(stdout);  
                 }  
   
                 if ((*s_etat_processus).pid_processus_pere != getpid())  
                 {  
                     kill((*s_etat_processus).pid_processus_pere, signal);  
                 }  
                 else  
                 {  
                     (*s_etat_processus).var_volatile_traitement_sigint = -1;  
   
                     while(exclusion == 1);  
                     exclusion = 1;  
   
                     if ((*s_etat_processus).var_volatile_requete_arret == -1)  
                     {  
                         deverrouillage_gestionnaire_signaux();  
                         exclusion = 0;  
                         return;  
                     }  
   
                     if (strncmp(getenv("LANG"), "fr", 2) == 0)  
                     {  
                         printf("+++Interruption\n");  
                     }  
                     else  
                     {  
                         printf("+++Interrupt\n");  
                     }  
   
                     fflush(stdout);  // Traitement de rpl_sigcont
   
                     (*s_etat_processus).var_volatile_requete_arret = -1;  static inline void
                     (*s_etat_processus).var_volatile_alarme = -1;  signal_cont(struct_processus *s_etat_processus, pid_t pid)
   {
       struct_processus        *s_thread_principal;
   
                     exclusion = 0;      verrouillage_gestionnaire_signaux(s_etat_processus);
                 }  
             }  
             else  
             {  
                 if (recherche_thread_principal(getpid(), &thread) == d_vrai)  
                 {  
                     pthread_kill(thread, signal);  
                 }  
             }  
   
             break;      if (pid == getpid())
         }      {
           (*s_etat_processus).redemarrage_processus = d_vrai;
       }
       else
       {
           // Envoi d'un signal au thread maître du groupe.
   
         default :          if ((s_thread_principal = recherche_thread_principal(getpid()))
                   != NULL)
         {          {
             BUG(1, uprintf("[%d] Unknown signal %d in this context\n",              envoi_signal_contexte(s_thread_principal, rpl_sigcont);
                     (int) getpid(), signal));  
             break;  
         }          }
     }      }
   
     deverrouillage_gestionnaire_signaux();      deverrouillage_gestionnaire_signaux(s_etat_processus);
     return;      return;
 }  }
   
 void  // Traitement de rpl_sigstop
 interruption2(SIGHANDLER_ARGS)  
 {  
     pid_t                   pid;  
   
     pthread_t               thread;  
   
     struct_processus        *s_etat_processus;  static inline void
   signal_stop(struct_processus *s_etat_processus, pid_t pid)
 #   ifdef _BROKEN_SIGINFO  {
     pid = origine_signal(signal);      struct_processus        *s_thread_principal;
 #   else  
     pid = (*siginfo).si_pid;  
 #   endif  
   
     verrouillage_gestionnaire_signaux();  
   
 #   ifndef _BROKEN_SIGINFO      verrouillage_gestionnaire_signaux(s_etat_processus);
     if (siginfo == NULL)  
     {  
         /*  
          * Le signal SIGFSTP provient de la mort du processus de contrôle.  
          * Sous certains systèmes (Linux...), la mort du terminal de contrôle  
          * se traduit par l'envoi d'un SIGHUP au processus. Sur d'autres  
          * (SunOS), le processus reçoit un SIGFSTP avec une structure siginfo  
          * non initialisée (pointeur NULL) issue de TERMIO.  
          */  
   
         if (recherche_thread_principal(getpid(), &thread) == d_vrai)  
         {  
             pthread_kill(thread, SIGHUP);  
             deverrouillage_gestionnaire_signaux();  
             return;  
         }  
     }  
     else  
 #   endif  
     if (pid == getpid())      if (pid == getpid())
     {      {
         if ((s_etat_processus = recherche_thread(getpid(), pthread_self()))  
                 == NULL)  
         {  
             deverrouillage_gestionnaire_signaux();  
             return;  
         }  
   
         /*  
          *  0 => fonctionnement normal  
          * -1 => requête  
          *  1 => requête acceptée en attente de traitement  
          */  
   
         if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)          if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)
         {          {
             printf("[%d] SIGTSTP (thread %llu)\n", (int) getpid(),              printf("[%d] RPL/SIGSTOP (thread %llu)\n", (int) getpid(),
                     (unsigned long long) pthread_self());                      (unsigned long long) pthread_self());
             fflush(stdout);              fflush(stdout);
         }          }
   
         if ((*s_etat_processus).var_volatile_processus_pere == 0)          /*
            * var_globale_traitement_retarde_stop :
            *  0 -> traitement immédiat
            *  1 -> traitement retardé (aucun signal reçu)
            * -1 -> traitement retardé (un ou plusieurs signaux stop reçus)
            */
   
           if ((*s_etat_processus).var_volatile_traitement_retarde_stop == 0)
         {          {
             kill((*s_etat_processus).pid_processus_pere, signal);              (*s_etat_processus).var_volatile_requete_arret = -1;
         }          }
         else          else
         {          {
             (*s_etat_processus).var_volatile_requete_arret2 = -1;              (*s_etat_processus).var_volatile_traitement_retarde_stop = -1;
         }          }
     }      }
     else      else
     {      {
         // Envoi d'un signal au thread maître du groupe.          // Envoi d'un signal au thread maître du groupe.
   
         if (recherche_thread_principal(getpid(), &thread) == d_vrai)          if ((s_thread_principal = recherche_thread_principal(getpid()))
                   != NULL)
         {          {
             pthread_kill(thread, SIGTSTP);              envoi_signal_contexte(s_thread_principal, rpl_sigstop);
             deverrouillage_gestionnaire_signaux();  
             return;  
         }          }
     }      }
   
     deverrouillage_gestionnaire_signaux();      deverrouillage_gestionnaire_signaux(s_etat_processus);
     return;      return;
 }  }
   
 void  // Traitement de rpl_siginject
 interruption3(SIGHANDLER_ARGS)  
 {  
     pid_t                   pid;  
   
     struct_processus        *s_etat_processus;  
   
     static int              compteur = 0;  
   
 #   ifdef _BROKEN_SIGINFO  
     pid = origine_signal(signal);  
 #   else  
     pid = (*siginfo).si_pid;  
 #   endif  
   
     verrouillage_gestionnaire_signaux();  static inline void
   signal_inject(struct_processus *s_etat_processus, pid_t pid)
   {
       verrouillage_gestionnaire_signaux(s_etat_processus);
   
     if ((s_etat_processus = recherche_thread(getpid(), pthread_self())) == NULL)      if ((s_etat_processus = recherche_thread(getpid(), pthread_self())) == NULL)
     {      {
         deverrouillage_gestionnaire_signaux();          deverrouillage_gestionnaire_signaux(s_etat_processus);
         return;          return;
     }      }
   
     if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)      if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)
     {      {
         printf("[%d] SIGSEGV (thread %llu)\n", (int) getpid(),          printf("[%d] RPL/SIGINJECT (thread %llu)\n", (int) getpid(),
                 (unsigned long long) pthread_self());                  (unsigned long long) pthread_self());
         fflush(stdout);          fflush(stdout);
     }      }
   
     if ((*s_etat_processus).var_volatile_recursivite == -1)      deverrouillage_gestionnaire_signaux(s_etat_processus);
     {      return;
         // Segfault dans un appel de fonction récursive  }
         deverrouillage_gestionnaire_signaux();  
         longjmp(contexte, -1);  
     }  
     else  
     {  
         // Segfault dans une routine interne  
         if (strncmp(getenv("LANG"), "fr", 2) == 0)  
         {  
             printf("+++Système : Violation d'accès (dépassement de pile)\n");  
         }  
         else  
         {  
             printf("+++System : Access violation (stack overflow)\n");  
         }  
   
         fflush(stdout);  
   
         compteur++;  static inline void
   signal_urg(struct_processus *s_etat_processus, pid_t pid)
   {
       struct_processus        *s_thread_principal;
   
       verrouillage_gestionnaire_signaux(s_etat_processus);
   
         if (compteur > 1)      if (pid == getpid())
       {
           if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)
         {          {
             deverrouillage_gestionnaire_signaux();              printf("[%d] RPL/SIGURG (thread %llu)\n", (int) getpid(),
             exit(EXIT_FAILURE);                      (unsigned long long) pthread_self());
               fflush(stdout);
         }          }
         else  
           (*s_etat_processus).var_volatile_alarme = -1;
           (*s_etat_processus).var_volatile_requete_arret = -1;
       }
       else
       {
           // Envoi d'un signal au thread maître du groupe.
   
           if ((s_thread_principal = recherche_thread_principal(getpid()))
                   != NULL)
         {          {
             deverrouillage_gestionnaire_signaux();              envoi_signal_contexte(s_thread_principal, rpl_sigurg);
             longjmp(contexte_initial, -1);  
         }          }
     }      }
   
     deverrouillage_gestionnaire_signaux();      deverrouillage_gestionnaire_signaux(s_etat_processus);
     return;      return;
 }  }
   
 void  // Traitement de rpl_sigabort
 interruption4(SIGHANDLER_ARGS)  
 {  
     pid_t                   pid;  
   
     struct_processus        *s_etat_processus;  
   
 #   ifdef _BROKEN_SIGINFO  static inline void
     pid = origine_signal(signal);  signal_abort(struct_processus *s_etat_processus, pid_t pid)
 #   else  {
     pid = (*siginfo).si_pid;      struct_processus        *s_thread_principal;
 #   endif  
   
     verrouillage_gestionnaire_signaux();      verrouillage_gestionnaire_signaux(s_etat_processus);
   
     if ((s_etat_processus = recherche_thread(getpid(), pthread_self())) == NULL)      if ((s_etat_processus = recherche_thread(getpid(), pthread_self())) == NULL)
     {      {
         deverrouillage_gestionnaire_signaux();          deverrouillage_gestionnaire_signaux(s_etat_processus);
         return;          return;
     }      }
   
     /*  
      * Démarrage d'un processus fils ou gestion de SIGCONT (SUSPEND)  
      */  
   
     if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)      if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)
     {      {
         printf("[%d] SIGSTART/SIGCONT (thread %llu)\n", (int) getpid(),          printf("[%d] RPL/SIGABORT (thread %llu)\n", (int) getpid(),
                 (unsigned long long) pthread_self());                  (unsigned long long) pthread_self());
         fflush(stdout);          fflush(stdout);
     }      }
   
     deverrouillage_gestionnaire_signaux();  
     return;  
 }  
   
 void  
 interruption5(SIGHANDLER_ARGS)  
 {  
     pid_t                   pid;  
   
     pthread_t               thread;  
   
     struct_processus        *s_etat_processus;  
   
 #   ifdef _BROKEN_SIGINFO  
     pid = origine_signal(signal);  
 #   else  
     pid = (*siginfo).si_pid;  
 #   endif  
   
     verrouillage_gestionnaire_signaux();  
   
     if (pid == getpid())      if (pid == getpid())
     {      {
         if ((s_etat_processus = recherche_thread(getpid(), pthread_self()))          (*s_etat_processus).arret_depuis_abort = -1;
                 == NULL)  
         {  
             deverrouillage_gestionnaire_signaux();  
             return;  
         }  
   
         if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)  
         {  
             printf("[%d] SIGFSTOP (thread %llu)\n", (int) getpid(),  
                     (unsigned long long) pthread_self());  
             fflush(stdout);  
         }  
   
         /*          /*
          * var_globale_traitement_retarde_stop :           * var_globale_traitement_retarde_stop :
Line 2550  interruption5(SIGHANDLER_ARGS) Line 2304  interruption5(SIGHANDLER_ARGS)
     }      }
     else      else
     {      {
         if ((s_etat_processus = recherche_thread(getpid(), pthread_self()))          (*s_etat_processus).arret_depuis_abort = -1;
                 == NULL)  
         {  
             deverrouillage_gestionnaire_signaux();  
             return;  
         }  
   
         // Envoi d'un signal au thread maître du groupe.          // Envoi d'un signal au thread maître du groupe.
   
         if (recherche_thread_principal(getpid(), &thread) == d_vrai)          if ((s_thread_principal = recherche_thread_principal(getpid()))
                   != NULL)
         {          {
             pthread_kill(thread, signal);              envoi_signal_contexte(s_thread_principal, rpl_sigabort);
             deverrouillage_gestionnaire_signaux();  
             return;  
         }          }
     }      }
   
     deverrouillage_gestionnaire_signaux();      deverrouillage_gestionnaire_signaux(s_etat_processus);
     return;      return;
 }  }
   
 void  
 interruption6(SIGHANDLER_ARGS)  
 {  
     pid_t                   pid;  
   
     struct_processus        *s_etat_processus;  static inline void
   signal_hup(struct_processus *s_etat_processus, pid_t pid)
   {
       file                    *fichier;
   
 #   ifdef _BROKEN_SIGINFO      unsigned char           nom[8 + 64 + 1];
     pid = origine_signal(signal);  
 #   else  
     pid = (*siginfo).si_pid;  
 #   endif  
   
     verrouillage_gestionnaire_signaux();      verrouillage_gestionnaire_signaux(s_etat_processus);
   
     if ((s_etat_processus = recherche_thread(getpid(), pthread_self())) == NULL)      if ((s_etat_processus = recherche_thread(getpid(), pthread_self())) == NULL)
     {      {
         deverrouillage_gestionnaire_signaux();          deverrouillage_gestionnaire_signaux(s_etat_processus);
         return;          return;
     }      }
   
       snprintf(nom, 8 + 64 + 1, "rpl-out-%llu-%llu",
               (unsigned long long) getpid(),
               (unsigned long long) pthread_self());
   
   #   pragma GCC diagnostic push
   #   pragma GCC diagnostic ignored "-Wunused-result"
   
       if ((fichier = fopen(nom, "w+")) != NULL)
       {
           fclose(fichier);
   
           freopen(nom, "w", stdout);
           freopen(nom, "w", stderr);
       }
   
       freopen("/dev/null", "r", stdin);
   
   #   pragma GCC diagnostic pop
   
     if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)      if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)
     {      {
         printf("[%d] SIGINJECT/SIGQUIT (thread %llu)\n", (int) getpid(),          printf("[%d] RPL/SIGHUP (thread %llu)\n", (int) getpid(),
                 (unsigned long long) pthread_self());                  (unsigned long long) pthread_self());
         fflush(stdout);          fflush(stdout);
     }      }
   
     deverrouillage_gestionnaire_signaux();      deverrouillage_gestionnaire_signaux(s_etat_processus);
     return;      return;
 }  }
   
 void  void
 interruption7(SIGHANDLER_ARGS)  traitement_exceptions_gsl(const char *reason, const char *file,
           int line, int gsl_errno)
 {  {
     pid_t                   pid;      code_erreur_gsl = gsl_errno;
       envoi_signal_processus(getpid(), rpl_sigexcept, d_faux);
     struct_processus        *s_etat_processus;      return;
   }
 #   ifdef _BROKEN_SIGINFO  
     pid = origine_signal(signal);  
 #   else  
     pid = (*siginfo).si_pid;  
 #   endif  
   
     verrouillage_gestionnaire_signaux();  static inline void
   signal_except(struct_processus *s_etat_processus, pid_t pid)
   {
       verrouillage_gestionnaire_signaux(s_etat_processus);
   
     if ((s_etat_processus = recherche_thread(getpid(), pthread_self())) == NULL)      if ((s_etat_processus = recherche_thread(getpid(), pthread_self())) == NULL)
     {      {
         deverrouillage_gestionnaire_signaux();          deverrouillage_gestionnaire_signaux(s_etat_processus);
         return;          return;
     }      }
   
     if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)      (*s_etat_processus).var_volatile_exception_gsl = code_erreur_gsl;
       deverrouillage_gestionnaire_signaux(s_etat_processus);
   
       return;
   }
   
   static inline void
   envoi_interruptions(struct_processus *s_etat_processus, enum signaux_rpl signal,
           pid_t pid_source)
   {
       switch(signal)
     {      {
         printf("[%d] SIGPIPE (thread %llu)\n", (int) getpid(),          case rpl_signull:
                 (unsigned long long) pthread_self());              break;
         fflush(stdout);  
     }          case rpl_sigint:
               signal_int(s_etat_processus, pid_source);
               break;
   
           case rpl_sigterm:
               signal_term(s_etat_processus, pid_source);
               break;
   
           case rpl_sigstart:
               signal_start(s_etat_processus, pid_source);
               break;
   
     (*s_etat_processus).var_volatile_requete_arret = -1;          case rpl_sigcont:
     deverrouillage_gestionnaire_signaux();              signal_cont(s_etat_processus, pid_source);
               break;
   
           case rpl_sigstop:
               signal_stop(s_etat_processus, pid_source);
               break;
   
           case rpl_sigabort:
               signal_abort(s_etat_processus, pid_source);
               break;
   
           case rpl_sigurg:
               signal_urg(s_etat_processus, pid_source);
               break;
   
           case rpl_siginject:
               signal_inject(s_etat_processus, pid_source);
               break;
   
           case rpl_sigalrm:
               signal_alrm(s_etat_processus, pid_source);
               break;
   
           case rpl_sighup:
               signal_hup(s_etat_processus, pid_source);
               break;
   
           case rpl_sigtstp:
               signal_tstp(s_etat_processus, pid_source);
               break;
   
           case rpl_sigexcept:
               signal_except(s_etat_processus, pid_source);
               break;
   
           default:
               if ((*s_etat_processus).langue == 'F')
               {
                   printf("+++System : Signal inconnu (%d) !\n", signal);
               }
               else
               {
                   printf("+++System : Spurious signal (%d) !\n", signal);
               }
   
               break;
       }
   
     BUG(1, printf("[%d] SIGPIPE\n", (int) getpid()));  
     return;      return;
 }  }
   
 void  void
 interruption8(SIGHANDLER_ARGS)  scrutation_interruptions(struct_processus *s_etat_processus)
 {  {
     pid_t                   pid;      // Interruptions qui arrivent sur le processus depuis un
       // processus externe.
   
     pthread_t               thread;      // Les pointeurs de lecture pointent sur les prochains éléments
       // à lire. Les pointeurs d'écriture pointent sur les prochains éléments à
       // écrire.
   
     struct_processus        *s_etat_processus;      if (sem_trywait(semaphore_queue_signaux) == 0)
       {
           while((*s_queue_signaux).pointeur_lecture !=
                   (*s_queue_signaux).pointeur_ecriture)
           {
               // Il y a un signal en attente dans le segment partagé. On le
               // traite.
   
 #   ifdef _BROKEN_SIGINFO              envoi_interruptions(s_etat_processus,
     pid = origine_signal(signal);                      (*s_queue_signaux).queue[(*s_queue_signaux)
 #   else                      .pointeur_lecture].signal, (*s_queue_signaux).queue
     pid = (*siginfo).si_pid;                      [(*s_queue_signaux).pointeur_lecture].pid);
               (*s_queue_signaux).pointeur_lecture =
                       ((*s_queue_signaux).pointeur_lecture + 1)
                       % LONGUEUR_QUEUE_SIGNAUX;
   
   #           ifndef IPCS_SYSV
               if (msync(s_queue_signaux, sizeof(s_queue_signaux),
                       MS_ASYNC | MS_INVALIDATE) != 0)
               {
                   sem_post(semaphore_queue_signaux);
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
   #           endif
   
               while(sem_wait(semaphore_signalisation) != 0)
               {
                   if (errno != EINTR)
                   {
                       (*s_etat_processus).erreur_systeme = d_es_processus;
                       return;
                   }
               }
           }
   
           sem_post(semaphore_queue_signaux);
       }
   
       // Interruptions qui arrivent depuis le groupe courant de threads.
   
       if (pthread_mutex_trylock(&mutex_liste_threads) == 0)
       {
           if (pthread_mutex_trylock(&((*s_etat_processus).mutex_signaux)) == 0)
           {
               while((*s_etat_processus).pointeur_signal_lecture !=
                       (*s_etat_processus).pointeur_signal_ecriture)
               {
                   // Il y a un signal dans la queue du thread courant.
                   // On le traite.
   
                   envoi_interruptions(s_etat_processus,
                           (*s_etat_processus).signaux_en_queue
                           [(*s_etat_processus).pointeur_signal_lecture],
                           getpid());
                   (*s_etat_processus).pointeur_signal_lecture =
                           ((*s_etat_processus).pointeur_signal_lecture + 1)
                           % LONGUEUR_QUEUE_SIGNAUX;
   
                   while(sem_wait(semaphore_signalisation) != 0)
                   {
                       if (errno != EINTR)
                       {
                           if (pthread_mutex_unlock(&mutex_liste_threads) != 0)
                           {
                               (*s_etat_processus).erreur_systeme = d_es_processus;
                               return;
                           }
   
                           (*s_etat_processus).erreur_systeme = d_es_processus;
                           return;
                       }
                   }
               }
   
               pthread_mutex_unlock(&((*s_etat_processus).mutex_signaux));
           }
   
           pthread_mutex_unlock(&mutex_liste_threads);
       }
   
       return;
   }
   
   
   /*
   ================================================================================
     Fonction renvoyant le nom du segment de mémoire partagée en fonction
     du pid du processus.
   ================================================================================
     Entrée : Chemin absolue servant de racine, pid du processus
   --------------------------------------------------------------------------------
     Sortie : NULL ou nom du segment
   --------------------------------------------------------------------------------
     Effet de bord : Néant
   ================================================================================
   */
   
   static unsigned char *
   nom_segment(unsigned char *chemin, pid_t pid)
   {
       unsigned char               *fichier;
   
   #   ifdef IPCS_SYSV // !POSIX
   #       ifndef OS2 // !OS2
   
               if ((fichier = sys_malloc((strlen(chemin) + 1 + 256 + 1) *
                       sizeof(unsigned char))) == NULL)
               {
                   return(NULL);
               }
   
               sprintf(fichier, "%s/RPL-SIGQUEUES-%d", chemin, (int) pid);
   #       else // OS2
               if ((fichier = sys_malloc((10 + 256 + 1) * sizeof(unsigned char)))
                       == NULL)
               {
                   return(NULL);
               }
   
               sprintf(fichier, "\\SHAREMEM\\RPL-SIGQUEUES-%d", (int) pid);
   #       endif // OS2
   #   else // POSIX
   
           if ((fichier = sys_malloc((1 + 256 + 1) *
                   sizeof(unsigned char))) == NULL)
           {
               return(NULL);
           }
   
           sprintf(fichier, "/RPL-SIGQUEUES-%d", (int) pid);
   #   endif
   
       return(fichier);
   }
   
   
   /*
   ================================================================================
     Fonctions d'envoi d'un signal à un thread ou à un processus.
   ================================================================================
     Entrée : processus et signal
   --------------------------------------------------------------------------------
     Sortie : erreur
   --------------------------------------------------------------------------------
     Effet de bord : Néant
   ================================================================================
   */
   
   int
   envoi_signal_processus(pid_t pid, enum signaux_rpl signal,
           logical1 test_ouverture)
   {
   #   ifndef OS2
           int                         segment;
 #   endif  #   endif
   
     verrouillage_gestionnaire_signaux();  #   ifndef IPCS_SYSV
           sem_t                       *semaphore;
           sem_t                       *signalisation;
   #   else
           sem_t                       *semaphore;
           sem_t                       *signalisation;
   #       ifndef OS2
               int                     desc;
               key_t                   clef;
   #       endif
   #   endif
   
       struct_queue_signaux            *queue;
   
       struct timespec                 attente;
   
       unsigned char                   *nom;
   
       // Il s'agit d'ouvrir le segment de mémoire partagée, de le projeter en
       // mémoire puis d'y inscrire le signal à traiter.
   
     if (pid == getpid())      if (pid == getpid())
     {      {
         if ((s_etat_processus = recherche_thread(getpid(), pthread_self()))          // Le signal est envoyé au même processus.
                 == NULL)  
           if (s_queue_signaux == NULL)
         {          {
             deverrouillage_gestionnaire_signaux();              return(1);
             return;  
         }          }
   
         if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)          while(sem_wait(semaphore_queue_signaux) != 0)
         {          {
             printf("[%d] SIGURG (thread %llu)\n", (int) getpid(),              if (errno != EINTR)
                     (unsigned long long) pthread_self());              {
             fflush(stdout);                  return(1);
               }
         }          }
   
         (*s_etat_processus).var_volatile_alarme = -1;          (*s_queue_signaux).queue[(*s_queue_signaux).pointeur_ecriture]
         (*s_etat_processus).var_volatile_requete_arret = -1;                  .pid = pid;
           (*s_queue_signaux).queue[(*s_queue_signaux).pointeur_ecriture]
                   .signal = signal;
   
           (*s_queue_signaux).pointeur_ecriture =
                   ((*s_queue_signaux).pointeur_ecriture + 1)
                   % LONGUEUR_QUEUE_SIGNAUX;
   
   #       ifndef IPCS_SYSV
           if (msync(s_queue_signaux, sizeof(s_queue_signaux),
                   MS_ASYNC | MS_INVALIDATE) != 0)
           {
               sem_post(semaphore_queue_signaux);
               return(1);
           }
   #       endif
   
           if (sem_post(semaphore_queue_signaux) != 0)
           {
               return(1);
           }
   
           if (sem_post(semaphore_signalisation) != 0)
           {
               return(1);
           }
     }      }
     else      else
     {      {
         // Envoi d'un signal au thread maître du groupe.          // Le signal est envoyé depuis un processus distinct.
   
   #       ifdef IPCS_SYSV
               if ((nom = nom_segment(racine_segment, pid)) == NULL)
               {
                   return(1);
               }
   
   #           ifndef OS2 // SysV
                   if (test_ouverture == d_vrai)
                   {
                       attente.tv_sec = 0;
                       attente.tv_nsec = GRANULARITE_us * 1000;
   
                       while((desc = open(nom, O_RDWR)) == -1)
                       {
                           nanosleep(&attente, NULL);
                           INCR_GRANULARITE(attente.tv_nsec);
                       }
                   }
                   else
                   {
                       if ((desc = open(nom, O_RDWR)) == -1)
                       {
                           sys_free(nom);
                           return(1);
                       }
                   }
   
                   close(desc);
   
                   if ((clef = ftok(nom, 1)) == -1)
                   {
                       sys_free(nom);
                       return(1);
                   }
   
                   sys_free(nom);
   
                   if ((segment = shmget(clef, sizeof(struct_queue_signaux), 0))
                           == -1)
                   {
                       return(1);
                   }
   
                   queue = shmat(segment, NULL, 0);
   #           else // OS/2
                   if (test_ouverture == d_vrai)
                   {
                       attente.tv_sec = 0;
                       attente.tv_nsec = GRANULARITE_us * 1000;
   
                       while(DosGetNamedSharedMem((PVOID) &queue, nom,
                               PAG_WRITE | PAG_READ) != 0)
                       {
                           nanosleep(&attente, NULL);
                           INCR_GRANULARITE(attente.tv_nsec);
                       }
                   }
                   else
                   {
                       if (DosGetNamedSharedMem((PVOID) &queue, nom,
                               PAG_WRITE | PAG_READ) != 0)
                       {
                           sys_free(nom);
                           return(1);
                       }
                   }
   
                   sys_free(nom);
   #           endif
   #       else // POSIX
               if ((nom = nom_segment(racine_segment, pid)) == NULL)
               {
                   return(1);
               }
   
               if (test_ouverture == d_vrai)
               {
                   attente.tv_sec = 0;
                   attente.tv_nsec = GRANULARITE_us * 1000;
   
                   while((segment = shm_open(nom, O_RDWR, 0)) == -1)
                   {
                       nanosleep(&attente, NULL);
                       INCR_GRANULARITE(attente.tv_nsec);
                   }
               }
               else
               {
                   if ((segment = shm_open(nom, O_RDWR, 0)) == -1)
                   {
                       sys_free(nom);
                       return(1);
                   }
               }
   
               sys_free(nom);
   
               if ((queue = mmap(NULL, sizeof(struct_queue_signaux),
                       PROT_READ | PROT_WRITE, MAP_SHARED, segment, 0)) ==
                       MAP_FAILED)
               {
                   close(segment);
                   return(1);
               }
   #       endif
   
         if (recherche_thread_principal(getpid(), &thread) == d_vrai)          // À ce moment, le segment de mémoire partagée est projeté
           // dans l'espace du processus.
   
           if ((semaphore = sem_open2(pid, SEM_QUEUE)) == SEM_FAILED)
         {          {
             pthread_kill(thread, SIGURG);  #           ifndef IPCS_SYSV // POSIX
             deverrouillage_gestionnaire_signaux();                  if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE) != 0)
             return;                  {
                       munmap(queue, sizeof(struct_queue_signaux));
                       close(segment);
                       return(1);
                   }
   
                   if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
                   {
                       close(segment);
                       return(1);
                   }
   
                   close(segment);
   #           else // IPCS_SYSV
   #               ifndef OS2 // SysV
                       if (shmdt(queue) != 0)
                       {
                           return(1);
                       }
   #               else // OS/2
                       // Pendant de DosGetNamedSHaredMem()
   #               endif
   #           endif
               return(1);
         }          }
     }  
   
     deverrouillage_gestionnaire_signaux();          if ((signalisation = sem_open2(pid, SEM_SIGNALISATION))
     return;                  == SEM_FAILED)
 }          {
   #           ifndef IPCS_SYSV // POSIX
                   if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE) != 0)
                   {
                       munmap(queue, sizeof(struct_queue_signaux));
                       close(segment);
                       sem_close(semaphore);
                       return(1);
                   }
   
 void                  if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
 interruption9(SIGHANDLER_ARGS)                  {
 {                      close(segment);
     pid_t                   pid;                      sem_close(semaphore);
                       return(1);
                   }
   
     struct_processus        *s_etat_processus;                  close(segment);
   #           else // IPCS_SYSV
   #               ifndef OS2 // SysV
                       if (shmdt(queue) != 0)
                       {
                           sem_close(semaphore);
                           return(1);
                       }
   #               else // OS/2
                       // Pendant de DosGetNamedSHaredMem()
   #               endif
   #           endif
   
 #   ifdef _BROKEN_SIGINFO              sem_close(semaphore);
     pid = origine_signal(signal);              return(1);
 #   else          }
     pid = (*siginfo).si_pid;  
 #   endif  
   
     verrouillage_gestionnaire_signaux();          while(sem_wait(semaphore) != 0)
           {
               if (errno != EINTR)
               {
   #               ifndef IPCS_SYSV // POSIX
                       if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE)
                               != 0)
                       {
                           munmap(queue, sizeof(struct_queue_signaux));
                           sem_close(semaphore);
                           sem_close(signalisation);
                           close(segment);
                           return(1);
                       }
   
     if ((s_etat_processus = recherche_thread(getpid(), pthread_self())) == NULL)                      if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
     {                      {
         deverrouillage_gestionnaire_signaux();                          sem_close(semaphore);
         return;                          sem_close(signalisation);
     }                          close(segment);
                           return(1);
                       }
   
     if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)                      close(segment);
     {  #               else // IPCS_SYSV
         printf("[%d] SIGABORT/SIGPROF (thread %llu)\n", (int) getpid(),  #                   ifndef OS2 // SysV
                 (unsigned long long) pthread_self());                          if (shmdt(queue) != 0)
         fflush(stdout);                          {
     }                              sem_close(semaphore);
                               sem_close(signalisation);
                               return(1);
                           }
   #                   else // OS/2
                           // Pendant de DosGetNamedSHaredMem()
   #                   endif
   #               endif
   
                   sem_close(semaphore);
                   sem_close(signalisation);
                   return(1);
               }
           }
   
     deverrouillage_gestionnaire_signaux();          (*queue).queue[(*queue).pointeur_ecriture].pid = getpid();
           (*queue).queue[(*queue).pointeur_ecriture].signal = signal;
   
 #   ifdef _BROKEN_SIGINFO          (*queue).pointeur_ecriture = ((*queue).pointeur_ecriture + 1)
     if (queue_in(getpid(), signal) != 0)                  % LONGUEUR_QUEUE_SIGNAUX;
     {  
         return;          if (sem_post(semaphore) != 0)
           {
   #           ifndef IPCS_SYSV // POSIX
                   if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE) != 0)
                   {
                       munmap(queue, sizeof(struct_queue_signaux));
                       close(segment);
                       sem_close(semaphore);
                       sem_close(signalisation);
                       return(1);
                   }
   
                   if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
                   {
                       close(segment);
                       sem_close(semaphore);
                       sem_close(signalisation);
                       return(1);
                   }
   
                   close(segment);
   #           else // IPCS_SYSV
   #               ifndef OS2 // SysV
                       if (shmdt(queue) != 0)
                       {
                           sem_close(semaphore);
                           sem_close(signalisation);
                           return(1);
                       }
   #               else // OS/2
                       // Pendant de DosGetNamedSHaredMem()
   #               endif
   #           endif
   
               sem_close(semaphore);
               sem_close(signalisation);
               return(1);
           }
   
           if (sem_close(semaphore) != 0)
           {
   #           ifndef IPCS_SYSV // POSIX
                   if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE) != 0)
                   {
                       munmap(queue, sizeof(struct_queue_signaux));
                       close(segment);
                       sem_close(signalisation);
                       return(1);
                   }
   
                   if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
                   {
                       close(segment);
                       sem_close(signalisation);
                       return(1);
                   }
   
                   close(segment);
   #           else // IPCS_SYSV
   #               ifndef OS2 // SysV
                       if (shmdt(queue) != 0)
                       {
                           sem_close(signalisation);
                           return(1);
                       }
   #               else // OS/2
                       // Pendant de DosGetNamedSHaredMem()
   #               endif
   #           endif
   
               sem_close(signalisation);
               return(1);
           }
   
           if (sem_post(signalisation) != 0)
           {
   #           ifndef IPCS_SYSV // POSIX
                   if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE) != 0)
                   {
                       munmap(queue, sizeof(struct_queue_signaux));
                       close(segment);
                       sem_close(signalisation);
                       return(1);
                   }
   
                   if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
                   {
                       close(segment);
                       sem_close(signalisation);
                       return(1);
                   }
   
                   close(segment);
   #           else // IPCS_SYSV
   #               ifndef OS2 // SysV
                       if (shmdt(queue) != 0)
                       {
                           sem_close(signalisation);
                           return(1);
                       }
   #               else // OS/2
                       // Pendant de DosGetNamedSHaredMem()
   #               endif
   #           endif
   
               sem_close(signalisation);
               return(1);
           }
   
           if (sem_close(signalisation) != 0)
           {
   #           ifndef IPCS_SYSV // POSIX
                   if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE) != 0)
                   {
                       munmap(queue, sizeof(struct_queue_signaux));
                       close(segment);
                       return(1);
                   }
   
                   if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
                   {
                       close(segment);
                       return(1);
                   }
   
                   close(segment);
   #           else // IPCS_SYSV
   #               ifndef OS2 // SysV
                       if (shmdt(queue) != 0)
                       {
                           return(1);
                       }
   #               else // OS/2
                       // Pendant de DosGetNamedSHaredMem()
   #               endif
   #           endif
   
               return(1);
           }
   
   #       ifndef IPCS_SYSV // POSIX
               if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE) != 0)
               {
                   munmap(queue, sizeof(struct_queue_signaux));
                   close(segment);
                   return(1);
               }
   
               if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
               {
                   close(segment);
                   return(1);
               }
   
               close(segment);
   #       else // IPCS_SYSV
   #           ifndef OS2 // SysV
                   if (shmdt(queue) != 0)
                   {
                       return(1);
                   }
   #           else // OS/2
                   // Pendant de DosGetNamedSHaredMem()
   #           endif
   #       endif
     }      }
   
     interruption11(signal);      return(0);
 #   else  
     interruption11(signal, siginfo, context);  
 #   endif  
     return;  
 }  }
   
 void  int
 interruption10(SIGHANDLER_ARGS)  envoi_signal_thread(pthread_t tid, enum signaux_rpl signal)
 {  {
     file                    *fichier;      // Un signal est envoyé d'un thread à un autre thread du même processus.
   
     pid_t                   pid;      volatile struct_liste_chainee_volatile  *l_element_courant;
   
     struct_processus        *s_etat_processus;      struct_processus                        *s_etat_processus;
   
     unsigned char           nom[8 + 64 + 1];      if (pthread_mutex_lock(&mutex_liste_threads) != 0)
       {
           return(1);
       }
   
 #   ifdef _BROKEN_SIGINFO      l_element_courant = liste_threads;
     pid = origine_signal(signal);  
 #   else  
     pid = (*siginfo).si_pid;  
 #   endif  
   
     verrouillage_gestionnaire_signaux();      while(l_element_courant != NULL)
       {
           if (((*((struct_thread *) (*l_element_courant).donnee)).pid
                   == getpid()) && (pthread_equal((*((struct_thread *)
                   (*l_element_courant).donnee)).tid, tid) != 0))
           {
               break;
           }
   
     if ((s_etat_processus = recherche_thread(getpid(), pthread_self())) == NULL)          l_element_courant = (*l_element_courant).suivant;
       }
   
       if (l_element_courant == NULL)
     {      {
         deverrouillage_gestionnaire_signaux();          pthread_mutex_unlock(&mutex_liste_threads);
         return;          return(1);
     }      }
   
     snprintf(nom, 8 + 64 + 1, "rpl-out-%lu-%lu", (unsigned long) getpid(),      s_etat_processus = (*((struct_thread *) (*l_element_courant).donnee))
             (unsigned long) pthread_self());              .s_etat_processus;
   
     if ((fichier = fopen(nom, "w+")) != NULL)      if (pthread_mutex_lock(&((*s_etat_processus).mutex_signaux)) != 0)
     {      {
         fclose(fichier);          pthread_mutex_unlock(&mutex_liste_threads);
           return(1);
       }
   
         freopen(nom, "w", stdout);      (*s_etat_processus).signaux_en_queue
         freopen(nom, "w", stderr);              [(*s_etat_processus).pointeur_signal_ecriture] = signal;
       (*s_etat_processus).pointeur_signal_ecriture =
               ((*s_etat_processus).pointeur_signal_ecriture + 1)
               % LONGUEUR_QUEUE_SIGNAUX;
   
       if (pthread_mutex_unlock(&((*s_etat_processus).mutex_signaux)) != 0)
       {
           pthread_mutex_unlock(&mutex_liste_threads);
           return(1);
     }      }
   
     freopen("/dev/null", "r", stdin);      if (pthread_mutex_unlock(&mutex_liste_threads) != 0)
       {
           return(1);
       }
   
     if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)      if (sem_post(semaphore_signalisation) != 0)
     {      {
         printf("[%d] SIGHUP (thread %llu)\n", (int) getpid(),          return(1);
                 (unsigned long long) pthread_self());  
         fflush(stdout);  
     }      }
   
     deverrouillage_gestionnaire_signaux();      return(0);
     return;  }
   
   int
   envoi_signal_contexte(struct_processus *s_etat_processus_a_signaler,
           enum signaux_rpl signal)
   {
       pthread_mutex_lock(&((*s_etat_processus_a_signaler).mutex_signaux));
       (*s_etat_processus_a_signaler).signaux_en_queue
               [(*s_etat_processus_a_signaler).pointeur_signal_ecriture] =
               signal;
       (*s_etat_processus_a_signaler).pointeur_signal_ecriture =
               ((*s_etat_processus_a_signaler).pointeur_signal_ecriture + 1)
               % LONGUEUR_QUEUE_SIGNAUX;
       pthread_mutex_unlock(&((*s_etat_processus_a_signaler).mutex_signaux));
   
       if (sem_post(semaphore_signalisation) != 0)
       {
           return(1);
       }
   
       return(0);
 }  }
   
   
   /*
   ================================================================================
     Fonction créant un segment de mémoire partagée destiné à contenir
     la queue des signaux.
   ================================================================================
     Entrée : structure de description du processus
   --------------------------------------------------------------------------------
     Sortie : Néant
   --------------------------------------------------------------------------------
     Effet de bord : Néant
   ================================================================================
   */
   
 void  void
 interruption11(SIGHANDLER_ARGS)  creation_queue_signaux(struct_processus *s_etat_processus)
 {  {
     pid_t                   pid;      pthread_attr_t                  attributs;
   
     pthread_t               thread;      unsigned char                   *nom;
   
     struct_processus        *s_etat_processus;      racine_segment = (*s_etat_processus).chemin_fichiers_temporaires;
   
 #   ifdef _BROKEN_SIGINFO  #   ifndef IPCS_SYSV // POSIX
     pid = origine_signal(signal);          if ((nom = nom_segment((*s_etat_processus).chemin_fichiers_temporaires,
 #   else                  getpid())) == NULL)
     pid = (*siginfo).si_pid;          {
 #   endif              (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
               return;
           }
   
     verrouillage_gestionnaire_signaux();          if ((f_queue_signaux = shm_open(nom, O_RDWR | O_CREAT | O_EXCL,
                   S_IRUSR | S_IWUSR)) == -1)
           {
               if (errno != EEXIST)
               {
                   sys_free(nom);
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
     if (pid == getpid())              if ((*s_etat_processus).langue == 'F')
     {              {
         if ((s_etat_processus = recherche_thread(getpid(), pthread_self()))                  printf("+++Attention : Le segment de mémoire %s préexiste !\n",
                 == NULL)                          nom);
               }
               else
               {
                   printf("+++Warning: %s memory segment preexists!\n", nom);
               }
   
               if ((f_queue_signaux = shm_open(nom, O_RDWR | O_CREAT | O_TRUNC,
                       S_IRUSR | S_IWUSR)) == -1)
               {
                   sys_free(nom);
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
           }
   
           if (ftruncate(f_queue_signaux, sizeof(struct_queue_signaux)) == -1)
         {          {
             deverrouillage_gestionnaire_signaux();              sys_free(nom);
               (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
             return;              return;
         }          }
   
         (*s_etat_processus).arret_depuis_abort = -1;          s_queue_signaux = mmap(NULL, sizeof(struct_queue_signaux),
                   PROT_READ | PROT_WRITE, MAP_SHARED, f_queue_signaux, 0);
   
         if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)          if (((void *) s_queue_signaux) == ((void *) -1))
         {          {
             printf("[%d] SIGFABORT (thread %llu)\n", (int) getpid(),              if (shm_unlink(nom) == -1)
                     (unsigned long long) pthread_self());              {
             fflush(stdout);                  sys_free(nom);
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               sys_free(nom);
               (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
               return;
         }          }
   
         /*          sys_free(nom);
          * var_globale_traitement_retarde_stop :  
          *  0 -> traitement immédiat  
          *  1 -> traitement retardé (aucun signal reçu)  
          * -1 -> traitement retardé (un ou plusieurs signaux stop reçus)  
          */  
   
         if ((*s_etat_processus).var_volatile_traitement_retarde_stop == 0)          if ((semaphore_queue_signaux = sem_init2(1, getpid(), SEM_QUEUE))
                   == SEM_FAILED)
         {          {
             (*s_etat_processus).var_volatile_requete_arret = -1;              (*s_etat_processus).erreur_systeme = d_es_processus;
               return;
         }          }
         else  
           if ((semaphore_signalisation = sem_init2(0, getpid(),
                   SEM_SIGNALISATION)) == SEM_FAILED)
         {          {
             (*s_etat_processus).var_volatile_traitement_retarde_stop = -1;              (*s_etat_processus).erreur_systeme = d_es_processus;
               return;
         }          }
     }  
     else          if ((semaphore_arret_signalisation = sem_init2(1, getpid(),
     {                  SEM_ARRET_SIGNALISATION)) == SEM_FAILED)
         if ((s_etat_processus = recherche_thread(getpid(), pthread_self()))  
                 == NULL)  
         {          {
             deverrouillage_gestionnaire_signaux();              (*s_etat_processus).erreur_systeme = d_es_processus;
             return;              return;
         }          }
   
         (*s_etat_processus).arret_depuis_abort = -1;          (*s_queue_signaux).pointeur_lecture = 0;
           (*s_queue_signaux).pointeur_ecriture = 0;
   
         // Envoi d'un signal au thread maître du groupe.          (*s_queue_signaux).requete_arret = d_faux;
   
         if (recherche_thread_principal(getpid(), &thread) == d_vrai)          if (msync(s_queue_signaux, sizeof(struct_queue_signaux),
                   MS_ASYNC | MS_INVALIDATE) != 0)
         {          {
             pthread_kill(thread, signal);              (*s_etat_processus).erreur_systeme = d_es_processus;
             deverrouillage_gestionnaire_signaux();  
             return;              return;
         }          }
   #   else // IPCS_SYSV
   #       ifndef OS2
               int                             segment;
               int                             support;
   
               key_t                           clef;
   
               // Création d'un segment de données associé au PID du processus
               // courant
   
               if ((nom = nom_segment((*s_etat_processus)
                       .chemin_fichiers_temporaires, getpid())) == NULL)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               if ((support = open(nom, O_RDWR | O_CREAT | O_EXCL,
                       S_IRUSR | S_IWUSR)) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_erreur_fichier;
                   return;
               }
   
               if ((clef = ftok(nom, 1)) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               close(support);
               sys_free(nom);
   
               if ((segment = shmget(clef, sizeof(struct_queue_signaux),
                       IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR)) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               s_queue_signaux = shmat(segment, NULL, 0);
               f_queue_signaux = segment;
   
               if (((void *) s_queue_signaux) == ((void *) -1))
               {
                   if (shmctl(f_queue_signaux, IPC_RMID, 0) == -1)
                   {
                       (*s_etat_processus).erreur_systeme =
                               d_es_allocation_memoire;
                       return;
                   }
   
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               if ((semaphore_queue_signaux = sem_init2(1, getpid(), SEM_QUEUE))
                       == SEM_FAILED)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
   
               if ((semaphore_signalisation = sem_init2(0, getpid(),
                       SEM_SIGNALISATION)) == SEM_FAILED)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
   
               if ((semaphore_arret_signalisation = sem_init2(1, getpid(),
                       SEM_ARRET_SIGNALISATION)) == SEM_FAILED)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
   
               (*s_queue_signaux).pointeur_lecture = 0;
               (*s_queue_signaux).pointeur_ecriture = 0;
               (*s_queue_signaux).requete_arret = d_faux;
   #       else // OS/2
               if ((nom = nom_segment(NULL, getpid())) == NULL)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               if (DosAllocSharedMem((PVOID) &s_queue_signaux, nom,
                       sizeof(struct_queue_signaux),
                       PAG_WRITE | PAG_READ | PAG_COMMIT) != 0)
               {
                   sys_free(nom);
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               sys_free(nom);
   
               sem_init(&((*s_queue_signaux).semaphore), 1, 1);
               sem_init(&((*s_queue_signaux).signalisation), 1, 0);
               sem_init(&((*s_queue_signaux).arret_signalisation), 1, 1);
   
               (*s_queue_signaux).pointeur_lecture = 0;
               (*s_queue_signaux).pointeur_ecriture = 0;
               (*s_queue_signaux).requete_arret = d_faux;
   #       endif
   #   endif
   
       // Lancement du thread de récupération des signaux.
   
       if (pthread_attr_init(&attributs) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
     }      }
   
     deverrouillage_gestionnaire_signaux();      if (pthread_attr_setdetachstate(&attributs,
     return;              PTHREAD_CREATE_JOINABLE) != 0)
 }      {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
       }
   
 void      (*s_queue_signaux).controle = getpid();
 traitement_exceptions_gsl(const char *reason, const char *file,  
         int line, int gsl_errno)  
 {  
     struct_processus        *s_etat_processus;  
   
     verrouillage_gestionnaire_signaux();      if (pthread_create(&((*s_queue_signaux).thread_signaux), &attributs,
               thread_surveillance_signaux, s_etat_processus) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
       }
   
     if ((s_etat_processus = recherche_thread(getpid(), pthread_self())) == NULL)      if (pthread_attr_destroy(&attributs) != 0)
     {      {
         deverrouillage_gestionnaire_signaux();          (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
       }
   
   #   ifndef IPCS_SYSV
       if (msync(s_queue_signaux, sizeof(s_queue_signaux),
               MS_ASYNC | MS_INVALIDATE) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
       }
   #           endif
   
       if (lancement_thread_signaux(s_etat_processus) == d_erreur)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
   
     (*s_etat_processus).var_volatile_exception_gsl = gsl_errno;  
     deverrouillage_gestionnaire_signaux();  
     return;      return;
 }  }
   
 #ifdef _BROKEN_SIGINFO  
   
 #undef kill  /*
 #undef pthread_kill  ================================================================================
     Fonction libérant le segment de mémoire partagée destiné à contenir
     la queue des signaux.
   ================================================================================
     Entrée : structure de description du processus
   --------------------------------------------------------------------------------
     Sortie : Néant
   --------------------------------------------------------------------------------
     Effet de bord : Néant
   ================================================================================
   */
   
 int  void
 rpl_kill(pid_t pid, int signal)  liberation_queue_signaux(struct_processus *s_etat_processus)
 {  {
     /*  #   ifdef IPCS_SYSV // SystemV
      * Lorsqu'on veut interrompre le processus pid, on ouvre le segment  #       ifndef OS2
      * correspondant au processus en question et ou ajoute le pid dans la              if (shmdt(s_queue_signaux) == -1)
      * queue.              {
      */                  (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   #       else // OS/2
   #       endif
   #   else // POSIX
           sem_close(semaphore_queue_signaux);
           sem_close(semaphore_signalisation);
           sem_close(semaphore_arret_signalisation);
   
     if ((signal != 0) && (signal != SIGINT))          if (munmap(s_queue_signaux, sizeof(struct_queue_signaux)) != 0)
     {  
         if (queue_in(pid, signal) != 0)  
         {          {
             return(-1);              (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
               return;
         }          }
     }  
   
     return(kill(pid, signal));          close(f_queue_signaux);
   #   endif
   
       return;
 }  }
   
 int  
 rpl_pthread_kill(pthread_t tid, int signal)  /*
   ================================================================================
     Fonction détruisant le segment de mémoire partagée destiné à contenir
     la queue des signaux.
   ================================================================================
     Entrée : structure de description du processus
   --------------------------------------------------------------------------------
     Sortie : Néant
   --------------------------------------------------------------------------------
     Effet de bord : Néant
   ================================================================================
   */
   
   void
   destruction_queue_signaux(struct_processus *s_etat_processus)
 {  {
     if ((signal != 0) && (signal != SIGINT))  #   ifndef OS2
           unsigned char       *nom;
   #   endif
   
       while(sem_wait(semaphore_arret_signalisation) != 0)
     {      {
         if (queue_in(getpid(), signal) != 0)          if (errno != EINTR)
         {          {
             return(-1);              (*s_etat_processus).erreur_systeme = d_es_processus;
               return;
         }          }
     }      }
   
     return(pthread_kill(tid, signal));      (*s_queue_signaux).requete_arret = d_vrai;
 }  
   
 #endif  #   ifndef IPCS_SYSV
       msync(s_queue_signaux, sizeof(s_queue_signaux), MS_ASYNC | MS_INVALIDATE);
   #   endif
   
       sem_post(semaphore_arret_signalisation);
   
       // Incrémenter le sémaphore pour être sûr de le débloquer.
   
       sem_post(semaphore_signalisation);
   
       if ((*s_queue_signaux).controle == getpid())
       {
           pthread_join((*s_queue_signaux).thread_signaux, NULL);
       }
       else
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
       }
   
       arret_thread_signaux(s_etat_processus);
   
   #   ifdef IPCS_SYSV // SystemV
   #       ifndef OS2
               // Il faut commencer par éliminer le sémaphore.
   
               if (semctl((*semaphore_queue_signaux).sem, 0, IPC_RMID) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
   
               unlink((*semaphore_queue_signaux).path);
               sys_free((*semaphore_queue_signaux).path);
   
               if (semctl((*semaphore_signalisation).sem, 0, IPC_RMID) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
   
               unlink((*semaphore_signalisation).path);
               sys_free((*semaphore_signalisation).path);
   
               if (semctl((*semaphore_arret_signalisation).sem, 0, IPC_RMID) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
   
               unlink((*semaphore_arret_signalisation).path);
               sys_free((*semaphore_arret_signalisation).path);
   
               if (shmdt(s_queue_signaux) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               if (shmctl(f_queue_signaux, IPC_RMID, 0) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               if ((nom = nom_segment((*s_etat_processus)
                       .chemin_fichiers_temporaires, getpid())) == NULL)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               unlink(nom);
               sys_free(nom);
   #       else
               sem_close(&((*s_queue_signaux).semaphore));
               sem_destroy(&((*s_queue_signaux).semaphore));
   
               sem_close(&((*s_queue_signaux).signalisation));
               sem_destroy(&((*s_queue_signaux).signalisation));
   
               sem_close(&((*s_queue_signaux).arret_signalisation));
               sem_destroy(&((*s_queue_signaux).arret_signalisation));
   
               if (DosFreeMem(s_queue_signaux) != 0)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   #       endif
   #   else // POSIX
           sem_destroy2(semaphore_queue_signaux, getpid(), SEM_QUEUE);
           sem_destroy2(semaphore_signalisation, getpid(), SEM_SIGNALISATION);
           sem_destroy2(semaphore_arret_signalisation, getpid(),
                   SEM_ARRET_SIGNALISATION);
   
           if (munmap(s_queue_signaux, sizeof(struct_queue_signaux)) != 0)
           {
               (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
               return;
           }
   
           if ((nom = nom_segment(NULL, getpid())) == NULL)
           {
               (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
               return;
           }
   
           close(f_queue_signaux);
   
           if (shm_unlink(nom) != 0)
           {
               sys_free(nom);
               (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
               return;
           }
   
           sys_free(nom);
   #   endif
   
       return;
   }
   
 // vim: ts=4  // vim: ts=4

Removed from v.1.31  
changed lines
  Added in v.1.183


CVSweb interface <joel.bertrand@systella.fr>