Diff for /rpl/src/interruptions.c between versions 1.68 and 1.204

version 1.68, 2011/09/14 17:55:59 version 1.204, 2019/07/16 08:31:22
Line 1 Line 1
 /*  /*
 ================================================================================  ================================================================================
   RPL/2 (R) version 4.1.3    RPL/2 (R) version 4.1.31
   Copyright (C) 1989-2011 Dr. BERTRAND Joël    Copyright (C) 1989-2019 Dr. BERTRAND Joël
   
   This file is part of RPL/2.    This file is part of RPL/2.
   
Line 52  typedef struct liste_chainee_volatile Line 52  typedef struct liste_chainee_volatile
     volatile void                           *donnee;      volatile void                           *donnee;
 } struct_liste_chainee_volatile;  } struct_liste_chainee_volatile;
   
   
 static volatile struct_liste_chainee_volatile   *liste_threads  static volatile struct_liste_chainee_volatile   *liste_threads
         = NULL;          = NULL;
 static volatile struct_liste_chainee_volatile   *liste_threads_surveillance  static volatile struct_liste_chainee_volatile   *liste_threads_surveillance
         = NULL;          = NULL;
 static volatile int                             code_erreur_gsl = 0;  static volatile int                             code_erreur_gsl = 0;
   
 static pthread_mutex_t                          mutex_interruptions  unsigned char                                   *racine_segment;
         = PTHREAD_MUTEX_INITIALIZER;  
   static void *
   thread_surveillance_signaux(void *argument)
   {
       // Cette fonction est lancée dans un thread créé par processus pour
       // gérer le cas des appels système qui seraient bloqués lors de l'arrivée du
       // signal SIGUSR2. Les processus externes n'envoient plus un signal au
       // processus ou au thread à signaler mais positionnent les informations
       // nécessaires dans la queue des signaux et incrémentent le sémaphore.
       // Le sémaphore est décrémenté lorsque le signal est effectivement traité.
   
       int                                     nombre_signaux_envoyes;
   
       struct_processus                        *s_etat_processus;
   
       struct timespec                         attente;
   
       volatile struct_liste_chainee_volatile  *l_element_courant;
   
       sigset_t                                set;
   
       sigfillset(&set);
       pthread_sigmask(SIG_BLOCK, &set, NULL);
   
       s_etat_processus = (struct_processus *) argument;
   
       for(;;)
       {
           attente.tv_sec = 0;
           attente.tv_nsec = GRANULARITE_us * 1000;
   
           if (sem_wait(semaphore_signalisation) == 0)
           {
               while(sem_wait(semaphore_arret_signalisation) != 0)
               {
                   if (errno != EINTR)
                   {
                       (*s_etat_processus).erreur_systeme = d_es_processus;
                   }
               }
   
               if ((*s_queue_signaux).requete_arret == d_vrai)
               {
                   sem_post(semaphore_arret_signalisation);
                   sem_post(semaphore_signalisation);
   
                   break;
               }
   
               sem_post(semaphore_signalisation);
   
               nombre_signaux_envoyes = 0;
   
               // Dans un premier temps, on verrouille la queue des signaux
               // affectée au processus courant pour vérifier s'il y a quelque
               // chose à traiter.
   
               while(sem_wait(semaphore_queue_signaux) != 0)
               {
                   if (errno != EINTR)
                   {
                       (*s_etat_processus).erreur_systeme = d_es_processus;
                   }
               }
   
               if ((*s_queue_signaux).pointeur_lecture !=
                       (*s_queue_signaux).pointeur_ecriture)
               {
                   // Attention : raise() envoit le signal au thread appelant !
                   // kill() l'envoie au processus appelant, donc dans notre
                   // cas à un thread aléatoire du processus, ce qui nous
                   // convient tout à fait puisqu'il s'agit de débloquer les
                   // appels système lents.
   
                   nombre_signaux_envoyes++;
                   kill(getpid(), SIGUSR2);
                   sched_yield();
               }
   
               sem_post(semaphore_queue_signaux);
               sem_post(semaphore_arret_signalisation);
   
               // Dans un second temps, on balaye toutes les queues de signaux
               // des threads du processus courant.
   
               // Attention : l'ordre de verrouillage des mutexes est important
               // pour éviter les conditions bloquantes !
   
               pthread_mutex_lock(&mutex_liste_threads);
   
               l_element_courant = liste_threads;
   
               while(l_element_courant != NULL)
               {
                   if ((*((struct_thread *) (*l_element_courant).donnee)).pid
                           == getpid())
                   {
                       pthread_mutex_lock(&((*(*((struct_thread *)
                               (*l_element_courant).donnee)).s_etat_processus)
                               .mutex_signaux));
   
                       if ((*(*((struct_thread *) (*l_element_courant).donnee))
                               .s_etat_processus).pointeur_signal_ecriture !=
                               (*(*((struct_thread *) (*l_element_courant)
                               .donnee)).s_etat_processus).pointeur_signal_lecture)
                       {
                           nombre_signaux_envoyes++;
                           pthread_kill((*((struct_thread *)
                                   (*l_element_courant).donnee)).tid, SIGUSR2);
                           sched_yield();
                       }
   
                       pthread_mutex_unlock(&((*(*((struct_thread *)
                               (*l_element_courant).donnee)).s_etat_processus)
                               .mutex_signaux));
                   }
   
                   l_element_courant = (*l_element_courant).suivant;
               }
   
               pthread_mutex_unlock(&mutex_liste_threads);
   
               // Nanosleep
   
               if (nombre_signaux_envoyes > 0)
               {
                   nanosleep(&attente, NULL);
               }
           }
           else
           {
               if (errno != EINTR)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
               }
           }
       }
   
       pthread_exit(NULL);
   }
   
 void  void
 modification_pid_thread_pere(struct_processus *s_etat_processus)  modification_pid_thread_pere(struct_processus *s_etat_processus)
Line 78  modification_pid_thread_pere(struct_proc Line 216  modification_pid_thread_pere(struct_proc
 void  void
 insertion_thread(struct_processus *s_etat_processus, logical1 thread_principal)  insertion_thread(struct_processus *s_etat_processus, logical1 thread_principal)
 {  {
       int                                         ios;
   
       struct timespec                             attente;
   
     volatile struct_liste_chainee_volatile      *l_nouvel_objet;      volatile struct_liste_chainee_volatile      *l_nouvel_objet;
   
     if ((l_nouvel_objet = malloc(sizeof(struct_liste_chainee_volatile)))      if ((l_nouvel_objet = malloc(sizeof(struct_liste_chainee_volatile)))
Line 100  insertion_thread(struct_processus *s_eta Line 242  insertion_thread(struct_processus *s_eta
     (*((struct_thread *) (*l_nouvel_objet).donnee)).s_etat_processus =      (*((struct_thread *) (*l_nouvel_objet).donnee)).s_etat_processus =
             s_etat_processus;              s_etat_processus;
   
     if (pthread_mutex_lock(&mutex_liste_threads) != 0)      attente.tv_sec = 0;
       attente.tv_nsec = GRANULARITE_us * 1000;
   
       while((ios = pthread_mutex_trylock(&mutex_liste_threads)) != 0)
     {      {
         (*s_etat_processus).erreur_systeme = d_es_processus;          if (ios != EBUSY)
         return;          {
               (*s_etat_processus).erreur_systeme = d_es_processus;
               return;
           }
   
           if (sem_post(&((*s_etat_processus).semaphore_fork)) != 0)
           {
               (*s_etat_processus).erreur_systeme = d_es_processus;
               return;
           }
   
           nanosleep(&attente, NULL);
           INCR_GRANULARITE(attente.tv_nsec);
   
           while(sem_wait(&((*s_etat_processus).semaphore_fork)) != 0)
           {
               if (errno != EINTR)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
           }
     }      }
   
     (*l_nouvel_objet).suivant = liste_threads;      (*l_nouvel_objet).suivant = liste_threads;
Line 131  insertion_thread_surveillance(struct_pro Line 297  insertion_thread_surveillance(struct_pro
         return;          return;
     }      }
   
     if (pthread_mutex_lock(&mutex_liste_threads) != 0)      if (pthread_mutex_lock(&mutex_liste_threads_surveillance) != 0)
     {      {
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
Line 146  insertion_thread_surveillance(struct_pro Line 312  insertion_thread_surveillance(struct_pro
   
     liste_threads_surveillance = l_nouvel_objet;      liste_threads_surveillance = l_nouvel_objet;
   
     if (pthread_mutex_unlock(&mutex_liste_threads) != 0)      if (pthread_mutex_unlock(&mutex_liste_threads_surveillance) != 0)
     {      {
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
Line 158  insertion_thread_surveillance(struct_pro Line 324  insertion_thread_surveillance(struct_pro
 void  void
 retrait_thread(struct_processus *s_etat_processus)  retrait_thread(struct_processus *s_etat_processus)
 {  {
       int                                     ios;
   
       struct timespec                         attente;
   
     volatile struct_liste_chainee_volatile  *l_element_precedent;      volatile struct_liste_chainee_volatile  *l_element_precedent;
     volatile struct_liste_chainee_volatile  *l_element_courant;      volatile struct_liste_chainee_volatile  *l_element_courant;
   
     if (pthread_mutex_lock(&mutex_liste_threads) != 0)      attente.tv_sec = 0;
       attente.tv_nsec = GRANULARITE_us * 1000;
   
       while((ios = pthread_mutex_trylock(&mutex_liste_threads)) != 0)
     {      {
         (*s_etat_processus).erreur_systeme = d_es_processus;          if (ios != EBUSY)
         return;          {
               (*s_etat_processus).erreur_systeme = d_es_processus;
               return;
           }
   
           if (sem_post(&((*s_etat_processus).semaphore_fork)) != 0)
           {
               (*s_etat_processus).erreur_systeme = d_es_processus;
               return;
           }
   
           nanosleep(&attente, NULL);
           INCR_GRANULARITE(attente.tv_nsec);
   
           while(sem_wait(&((*s_etat_processus).semaphore_fork)) != 0)
           {
               if (errno != EINTR)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
           }
     }      }
   
     l_element_precedent = NULL;      l_element_precedent = NULL;
Line 205  retrait_thread(struct_processus *s_etat_ Line 399  retrait_thread(struct_processus *s_etat_
         return;          return;
     }      }
   
       // Le thread ne peut plus traiter de signaux explicites. Il convient
       // alors de corriger le sémaphore pour annuler les signaux en attente.
   
       while((*(*((struct_thread *) (*l_element_courant).donnee)).s_etat_processus)
               .pointeur_signal_ecriture != (*(*((struct_thread *)
               (*l_element_courant).donnee)).s_etat_processus)
               .pointeur_signal_lecture)
       {
           while(sem_wait(semaphore_signalisation) != 0)
           {
               if (errno != EINTR)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
           }
   
           (*(*((struct_thread *) (*l_element_courant).donnee)).s_etat_processus)
                   .pointeur_signal_lecture = ((*(*((struct_thread *)
                   (*l_element_courant).donnee)).s_etat_processus)
                   .pointeur_signal_lecture + 1) % LONGUEUR_QUEUE_SIGNAUX;
       }
   
     free((void *) (*l_element_courant).donnee);      free((void *) (*l_element_courant).donnee);
     free((struct_liste_chainee_volatile *) l_element_courant);      free((struct_liste_chainee_volatile *) l_element_courant);
   
Line 218  retrait_thread_surveillance(struct_proce Line 435  retrait_thread_surveillance(struct_proce
     volatile struct_liste_chainee_volatile  *l_element_precedent;      volatile struct_liste_chainee_volatile  *l_element_precedent;
     volatile struct_liste_chainee_volatile  *l_element_courant;      volatile struct_liste_chainee_volatile  *l_element_courant;
   
     if (pthread_mutex_lock(&mutex_liste_threads) != 0)      if (pthread_mutex_lock(&mutex_liste_threads_surveillance) != 0)
     {      {
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
Line 240  retrait_thread_surveillance(struct_proce Line 457  retrait_thread_surveillance(struct_proce
   
     if (l_element_courant == NULL)      if (l_element_courant == NULL)
     {      {
         pthread_mutex_unlock(&mutex_liste_threads);          pthread_mutex_unlock(&mutex_liste_threads_surveillance);
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
Line 257  retrait_thread_surveillance(struct_proce Line 474  retrait_thread_surveillance(struct_proce
     if (pthread_mutex_lock(&((*s_argument_thread).mutex_nombre_references))      if (pthread_mutex_lock(&((*s_argument_thread).mutex_nombre_references))
             != 0)              != 0)
     {      {
         pthread_mutex_unlock(&mutex_liste_threads);          pthread_mutex_unlock(&mutex_liste_threads_surveillance);
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
Line 273  retrait_thread_surveillance(struct_proce Line 490  retrait_thread_surveillance(struct_proce
         if (pthread_mutex_unlock(&((*s_argument_thread)          if (pthread_mutex_unlock(&((*s_argument_thread)
                 .mutex_nombre_references)) != 0)                  .mutex_nombre_references)) != 0)
         {          {
             pthread_mutex_unlock(&mutex_liste_threads);              pthread_mutex_unlock(&mutex_liste_threads_surveillance);
             (*s_etat_processus).erreur_systeme = d_es_processus;              (*s_etat_processus).erreur_systeme = d_es_processus;
             return;              return;
         }          }
Line 287  retrait_thread_surveillance(struct_proce Line 504  retrait_thread_surveillance(struct_proce
         if (pthread_mutex_unlock(&((*s_argument_thread)          if (pthread_mutex_unlock(&((*s_argument_thread)
                 .mutex_nombre_references)) != 0)                  .mutex_nombre_references)) != 0)
         {          {
             pthread_mutex_unlock(&mutex_liste_threads);              pthread_mutex_unlock(&mutex_liste_threads_surveillance);
             (*s_etat_processus).erreur_systeme = d_es_processus;              (*s_etat_processus).erreur_systeme = d_es_processus;
             return;              return;
         }          }
     }      }
   
     if (pthread_mutex_unlock(&mutex_liste_threads) != 0)      if (pthread_mutex_unlock(&mutex_liste_threads_surveillance) != 0)
     {      {
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
Line 306  retrait_thread_surveillance(struct_proce Line 523  retrait_thread_surveillance(struct_proce
 void  void
 verrouillage_threads_concurrents(struct_processus *s_etat_processus)  verrouillage_threads_concurrents(struct_processus *s_etat_processus)
 {  {
       int                                     ios;
   
       struct timespec                         attente;
   
     volatile struct_liste_chainee_volatile  *l_element_courant;      volatile struct_liste_chainee_volatile  *l_element_courant;
   
     if (pthread_mutex_lock(&mutex_liste_threads) != 0)      attente.tv_sec = 0;
       attente.tv_nsec = GRANULARITE_us * 1000;
   
       while((ios = pthread_mutex_trylock(&mutex_liste_threads)) != 0)
     {      {
         (*s_etat_processus).erreur_systeme = d_es_processus;          if (ios != EBUSY)
         return;          {
               (*s_etat_processus).erreur_systeme = d_es_processus;
               return;
           }
   
           if (sem_post(&((*s_etat_processus).semaphore_fork)) != 0)
           {
               (*s_etat_processus).erreur_systeme = d_es_processus;
               return;
           }
   
           nanosleep(&attente, NULL);
           INCR_GRANULARITE(attente.tv_nsec);
   
           while(sem_wait(&((*s_etat_processus).semaphore_fork)) != 0)
           {
               if (errno != EINTR)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
           }
     }      }
   
     l_element_courant = liste_threads;      l_element_courant = liste_threads;
Line 322  verrouillage_threads_concurrents(struct_ Line 567  verrouillage_threads_concurrents(struct_
                 == getpid()) && (pthread_equal((*((struct_thread *)                  == getpid()) && (pthread_equal((*((struct_thread *)
                 (*l_element_courant).donnee)).tid, pthread_self()) == 0))                  (*l_element_courant).donnee)).tid, pthread_self()) == 0))
         {          {
             if (pthread_mutex_lock(&((*(*((struct_thread *) (*l_element_courant)  #           ifndef SEMAPHORES_NOMMES
                     .donnee)).s_etat_processus).mutex_fork)) == -1)                  while(sem_wait(&((*(*((struct_thread *) (*l_element_courant)
                           .donnee)).s_etat_processus).semaphore_fork)) == -1)
   #           else
                   while(sem_wait((*(*((struct_thread *) (*l_element_courant)
                           .donnee)).s_etat_processus).semaphore_fork) == -1)
   #           endif
             {              {
                 (*s_etat_processus).erreur_systeme = d_es_processus;                  if (errno != EINTR)
                 return;                  {
                       (*s_etat_processus).erreur_systeme = d_es_processus;
                       return;
                   }
             }              }
         }          }
   
Line 349  deverrouillage_threads_concurrents(struc Line 602  deverrouillage_threads_concurrents(struc
                 == getpid()) && (pthread_equal((*((struct_thread *)                  == getpid()) && (pthread_equal((*((struct_thread *)
                 (*l_element_courant).donnee)).tid, pthread_self()) == 0))                  (*l_element_courant).donnee)).tid, pthread_self()) == 0))
         {          {
             if (pthread_mutex_unlock(&((*(*((struct_thread *)  #           ifndef SEMAPHORES_NOMMES
                     (*l_element_courant).donnee)).s_etat_processus)                  if (sem_post(&((*(*((struct_thread *)
                     .mutex_fork)) != 0)                          (*l_element_courant).donnee)).s_etat_processus)
                           .semaphore_fork)) != 0)
   #           else
                   if (sem_post((*(*((struct_thread *)
                           (*l_element_courant).donnee)).s_etat_processus)
                           .semaphore_fork) != 0)
   #           endif
             {              {
                 if (pthread_mutex_unlock(&mutex_liste_threads) != 0)                  if (pthread_mutex_unlock(&mutex_liste_threads) != 0)
                 {                  {
Line 385  liberation_threads(struct_processus *s_e Line 644  liberation_threads(struct_processus *s_e
   
     struct_processus                            *candidat;      struct_processus                            *candidat;
   
     unsigned long                               i;      struct_liste_variables_partagees            *l_element_partage_courant;
       struct_liste_variables_partagees            *l_element_partage_suivant;
   
       struct_liste_variables_statiques            *l_element_statique_courant;
       struct_liste_variables_statiques            *l_element_statique_suivant;
   
       integer8                                    i;
   
     void                                        *element_candidat;      void                                        *element_candidat;
     void                                        *element_courant;      void                                        *element_courant;
Line 428  liberation_threads(struct_processus *s_e Line 693  liberation_threads(struct_processus *s_e
             close((*s_etat_processus).pipe_injections);              close((*s_etat_processus).pipe_injections);
             close((*s_etat_processus).pipe_nombre_injections);              close((*s_etat_processus).pipe_nombre_injections);
             close((*s_etat_processus).pipe_interruptions);              close((*s_etat_processus).pipe_interruptions);
             close((*s_etat_processus).pipe_nombre_objets_attente);              close((*s_etat_processus).pipe_nombre_elements_attente);
             close((*s_etat_processus).pipe_nombre_interruptions_attente);  
   
             liberation(s_etat_processus, (*s_etat_processus).at_exit);              liberation(s_etat_processus, (*s_etat_processus).at_exit);
   
Line 497  liberation_threads(struct_processus *s_e Line 761  liberation_threads(struct_processus *s_e
                     close((*s_argument_thread).pipe_acquittement[1]);                      close((*s_argument_thread).pipe_acquittement[1]);
                     close((*s_argument_thread).pipe_injections[1]);                      close((*s_argument_thread).pipe_injections[1]);
                     close((*s_argument_thread).pipe_nombre_injections[1]);                      close((*s_argument_thread).pipe_nombre_injections[1]);
                     close((*s_argument_thread).pipe_nombre_objets_attente[0]);                      close((*s_argument_thread).pipe_nombre_elements_attente[0]);
                     close((*s_argument_thread).pipe_interruptions[0]);                      close((*s_argument_thread).pipe_interruptions[0]);
                     close((*s_argument_thread)  
                             .pipe_nombre_interruptions_attente[0]);  
   
                     if (pthread_mutex_unlock(&((*s_argument_thread)                      if (pthread_mutex_unlock(&((*s_argument_thread)
                             .mutex_nombre_references)) != 0)                              .mutex_nombre_references)) != 0)
Line 600  liberation_threads(struct_processus *s_e Line 862  liberation_threads(struct_processus *s_e
                 }                  }
             }              }
   
             liberation_arbre_variables(s_etat_processus,  
                     (*s_etat_processus).s_arbre_variables, d_faux);  
   
             for(i = 0; i < (*s_etat_processus).nombre_variables_statiques; i++)  
             {  
                 pthread_mutex_trylock(&((*(*s_etat_processus)  
                         .s_liste_variables_statiques[i].objet).mutex));  
                 pthread_mutex_unlock(&((*(*s_etat_processus)  
                         .s_liste_variables_statiques[i].objet).mutex));  
   
                 liberation(s_etat_processus, (*s_etat_processus)  
                         .s_liste_variables_statiques[i].objet);  
                 free((*s_etat_processus).s_liste_variables_statiques[i].nom);  
             }  
   
             free((*s_etat_processus).s_liste_variables_statiques);  
   
             // Ne peut être effacé qu'une seule fois              // Ne peut être effacé qu'une seule fois
             if (suppression_variables_partagees == d_faux)              if (suppression_variables_partagees == d_faux)
             {              {
                 suppression_variables_partagees = d_vrai;                  suppression_variables_partagees = d_vrai;
   
                 for(i = 0; i < (*(*s_etat_processus)                  liberation_arbre_variables_partagees(s_etat_processus,
                         .s_liste_variables_partagees).nombre_variables; i++)                          (*(*s_etat_processus).s_arbre_variables_partagees));
                 {                  (*(*s_etat_processus).s_arbre_variables_partagees) = NULL;
                     pthread_mutex_trylock(&((*(*(*s_etat_processus)  
                             .s_liste_variables_partagees).table[i].objet)  
                             .mutex));  
                     pthread_mutex_unlock(&((*(*(*s_etat_processus)  
                             .s_liste_variables_partagees).table[i].objet)  
                             .mutex));  
   
                     liberation(s_etat_processus, (*(*s_etat_processus)                  l_element_partage_courant = (*(*s_etat_processus)
                             .s_liste_variables_partagees).table[i].objet);                          .l_liste_variables_partagees);
                     free((*(*s_etat_processus).s_liste_variables_partagees)  
                             .table[i].nom);  
                 }  
   
                 if ((*(*s_etat_processus).s_liste_variables_partagees).table                  while(l_element_partage_courant != NULL)
                         != NULL)  
                 {                  {
                     free((struct_variable_partagee *) (*(*s_etat_processus)                      l_element_partage_suivant =
                             .s_liste_variables_partagees).table);                              (*l_element_partage_courant).suivant;
                       free(l_element_partage_courant);
                       l_element_partage_courant = l_element_partage_suivant;
                 }                  }
   
                 pthread_mutex_trylock(&((*(*s_etat_processus)                  (*(*s_etat_processus).l_liste_variables_partagees) = NULL;
                         .s_liste_variables_partagees).mutex));              }
                 pthread_mutex_unlock(&((*(*s_etat_processus)  
                         .s_liste_variables_partagees).mutex));              liberation_arbre_variables(s_etat_processus,
                       (*s_etat_processus).s_arbre_variables, d_faux);
   
               l_element_statique_courant = (*s_etat_processus)
                       .l_liste_variables_statiques;
   
               while(l_element_statique_courant != NULL)
               {
                   l_element_statique_suivant =
                       (*l_element_statique_courant).suivant;
                   free(l_element_statique_courant);
                   l_element_statique_courant = l_element_statique_suivant;
             }              }
   
             element_courant = (*s_etat_processus).l_base_pile;              element_courant = (*s_etat_processus).l_base_pile;
Line 1107  liberation_threads(struct_processus *s_e Line 1355  liberation_threads(struct_processus *s_e
   
             liberation_allocateur(s_etat_processus);              liberation_allocateur(s_etat_processus);
   
             pthread_mutex_unlock(&((*s_etat_processus).mutex_fork));  #           ifndef SEMAPHORES_NOMMES
             pthread_mutex_destroy(&((*s_etat_processus).mutex_fork));                  sem_post(&((*s_etat_processus).semaphore_fork));
                   sem_destroy(&((*s_etat_processus).semaphore_fork));
   #           else
                   sem_post((*s_etat_processus).semaphore_fork);
                   sem_close((*s_etat_processus).semaphore_fork);
   #           endif
   
             liberation_contexte_cas(s_etat_processus);              liberation_contexte_cas(s_etat_processus);
             free(s_etat_processus);              liberation_allocateur_buffer(s_etat_processus);
               sys_free(s_etat_processus);
   
             s_etat_processus = candidat;              s_etat_processus = candidat;
         }          }
Line 1126  liberation_threads(struct_processus *s_e Line 1380  liberation_threads(struct_processus *s_e
   
     liste_threads = NULL;      liste_threads = NULL;
   
       if (pthread_mutex_unlock(&mutex_liste_threads) == -1)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
       }
   
       if (pthread_mutex_lock(&mutex_liste_threads_surveillance) == -1)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
       }
   
     l_element_courant = liste_threads_surveillance;      l_element_courant = liste_threads_surveillance;
   
     while(l_element_courant != NULL)      while(l_element_courant != NULL)
Line 1137  liberation_threads(struct_processus *s_e Line 1403  liberation_threads(struct_processus *s_e
                 != 0)                  != 0)
         {          {
             (*s_etat_processus).erreur_systeme = d_es_processus;              (*s_etat_processus).erreur_systeme = d_es_processus;
             pthread_mutex_unlock(&mutex_liste_threads);              pthread_mutex_unlock(&mutex_liste_threads_surveillance);
             return;              return;
         }          }
   
Line 1153  liberation_threads(struct_processus *s_e Line 1419  liberation_threads(struct_processus *s_e
             close((*s_argument_thread).pipe_acquittement[1]);              close((*s_argument_thread).pipe_acquittement[1]);
             close((*s_argument_thread).pipe_injections[1]);              close((*s_argument_thread).pipe_injections[1]);
             close((*s_argument_thread).pipe_nombre_injections[1]);              close((*s_argument_thread).pipe_nombre_injections[1]);
             close((*s_argument_thread).pipe_nombre_objets_attente[0]);              close((*s_argument_thread).pipe_nombre_elements_attente[0]);
             close((*s_argument_thread).pipe_interruptions[0]);              close((*s_argument_thread).pipe_interruptions[0]);
             close((*s_argument_thread).pipe_nombre_interruptions_attente[0]);  
   
             if (pthread_mutex_unlock(&((*s_argument_thread)              if (pthread_mutex_unlock(&((*s_argument_thread)
                     .mutex_nombre_references)) != 0)                      .mutex_nombre_references)) != 0)
             {              {
                 (*s_etat_processus).erreur_systeme = d_es_processus;                  (*s_etat_processus).erreur_systeme = d_es_processus;
                 pthread_mutex_unlock(&mutex_liste_threads);                  pthread_mutex_unlock(&mutex_liste_threads_surveillance);
                 return;                  return;
             }              }
   
Line 1185  liberation_threads(struct_processus *s_e Line 1450  liberation_threads(struct_processus *s_e
                     .mutex_nombre_references)) != 0)                      .mutex_nombre_references)) != 0)
             {              {
                 (*s_etat_processus).erreur_systeme = d_es_processus;                  (*s_etat_processus).erreur_systeme = d_es_processus;
                 pthread_mutex_unlock(&mutex_liste_threads);                  pthread_mutex_unlock(&mutex_liste_threads_surveillance);
                 return;                  return;
             }              }
         }          }
Line 1197  liberation_threads(struct_processus *s_e Line 1462  liberation_threads(struct_processus *s_e
   
     liste_threads_surveillance = NULL;      liste_threads_surveillance = NULL;
   
     if (pthread_mutex_unlock(&mutex_liste_threads) != 0)      if (pthread_mutex_unlock(&mutex_liste_threads_surveillance) != 0)
     {      {
         (*s_etat_processus).erreur_systeme = d_es_processus;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
Line 1213  recherche_thread(pid_t pid, pthread_t ti Line 1478  recherche_thread(pid_t pid, pthread_t ti
   
     struct_processus                            *s_etat_processus;      struct_processus                            *s_etat_processus;
   
       if (pthread_mutex_lock(&mutex_liste_threads) != 0)
       {
           return(NULL);
       }
   
     l_element_courant = liste_threads;      l_element_courant = liste_threads;
   
     while(l_element_courant != NULL)      while(l_element_courant != NULL)
Line 1233  recherche_thread(pid_t pid, pthread_t ti Line 1503  recherche_thread(pid_t pid, pthread_t ti
          * Le processus n'existe plus. On ne distribue aucun signal.           * Le processus n'existe plus. On ne distribue aucun signal.
          */           */
   
           pthread_mutex_unlock(&mutex_liste_threads);
         return(NULL);          return(NULL);
     }      }
   
     s_etat_processus = (*((struct_thread *)      s_etat_processus = (*((struct_thread *)
             (*l_element_courant).donnee)).s_etat_processus;              (*l_element_courant).donnee)).s_etat_processus;
   
       if (pthread_mutex_unlock(&mutex_liste_threads) != 0)
       {
           return(NULL);
       }
   
     return(s_etat_processus);      return(s_etat_processus);
 }  }
   
Line 1294  recherche_thread_principal(pid_t pid) Line 1570  recherche_thread_principal(pid_t pid)
 static inline void  static inline void
 verrouillage_gestionnaire_signaux(struct_processus *s_etat_processus)  verrouillage_gestionnaire_signaux(struct_processus *s_etat_processus)
 {  {
     int         semaphore;      return;
   
     if (pthread_mutex_unlock(&((*s_etat_processus).mutex_fork)) != 0)  
     {  
         BUG(1, uprintf("Lock error !\n"));  
         return;  
     }  
   
     // Il faut respecteur l'atomicité des deux opérations suivantes !  
   
     if (pthread_mutex_lock(&mutex_gestionnaires_signaux_atomique) != 0)  
     {  
         pthread_mutex_lock(&((*s_etat_processus).mutex_fork));  
         BUG(1, uprintf("Unlock error !\n"));  
         return;  
     }  
   
 #   ifndef SEMAPHORES_NOMMES  #   ifndef SEMAPHORES_NOMMES
     if (sem_post(&semaphore_gestionnaires_signaux) == -1)      if (sem_post(&((*s_etat_processus).semaphore_fork)) != 0)
 #   else  #   else
     if (sem_post(semaphore_gestionnaires_signaux) == -1)      if (sem_post((*s_etat_processus).semaphore_fork) != 0)
 #   endif  #   endif
     {      {
         pthread_mutex_lock(&((*s_etat_processus).mutex_fork));  
         BUG(1, uprintf("Lock error !\n"));          BUG(1, uprintf("Lock error !\n"));
         return;          return;
     }      }
   
       return;
   }
   
   static inline void
   deverrouillage_gestionnaire_signaux(struct_processus *s_etat_processus)
   {
       return;
   
 #   ifndef SEMAPHORES_NOMMES  #   ifndef SEMAPHORES_NOMMES
     if (sem_getvalue(&semaphore_gestionnaires_signaux, &semaphore) != 0)      while(sem_wait(&((*s_etat_processus).semaphore_fork)) != 0)
 #   else  #   else
     if (sem_getvalue(semaphore_gestionnaires_signaux, &semaphore) != 0)      while(sem_wait((*s_etat_processus).semaphore_fork) != 0)
 #   endif  #   endif
     {      {
         pthread_mutex_lock(&((*s_etat_processus).mutex_fork));          if (errno != EINTR)
         BUG(1, uprintf("Lock error !\n"));  
         return;  
     }  
   
     if (pthread_mutex_unlock(&mutex_gestionnaires_signaux_atomique) != 0)  
     {  
         pthread_mutex_lock(&((*s_etat_processus).mutex_fork));  
         BUG(1, uprintf("Unlock error !\n"));  
         return;  
     }  
   
     if (semaphore == 1)  
     {  
         // Le semaphore ne peut être pris par le thread qui a appelé  
         // le gestionnaire de signal car le signal est bloqué par ce thread  
         // dans les zones critiques. Ce sémaphore ne peut donc être bloqué que  
         // par un thread concurrent. On essaye donc de le bloquer jusqu'à  
         // ce que ce soit possible.  
   
         if (pthread_mutex_lock(&mutex_liste_threads) != 0)  
         {          {
             pthread_mutex_lock(&((*s_etat_processus).mutex_fork));              BUG(1, uprintf("Unlock error !\n"));
             BUG(1, uprintf("Lock error !\n"));  
             return;              return;
         }          }
     }      }
Line 1359  verrouillage_gestionnaire_signaux(struct Line 1606  verrouillage_gestionnaire_signaux(struct
     return;      return;
 }  }
   
 static inline void  /*
 deverrouillage_gestionnaire_signaux(struct_processus *s_etat_processus)  ================================================================================
 {    Fonctions de gestion des signaux dans les threads.
     int         semaphore;  
     Lorsqu'un processus reçoit un signal, il appelle le gestionnaire de signal
     associé qui ne fait qu'envoyer au travers de write() le signal
     reçus dans un pipe. Un second thread est bloqué sur ce pipe et
     effectue le traitement adéquat pour le signal donné.
   ================================================================================
   */
   
   #define test_signal(signal) \
       if (signal_test == SIGTEST) { signal_test = signal; return; }
   
   static int          pipe_signaux;
   
     // Il faut respecteur l'atomicité des deux opérations suivantes !  logical1
   lancement_thread_signaux(struct_processus *s_etat_processus)
   {
       pthread_attr_t                  attributs;
   
     if (pthread_mutex_lock(&mutex_gestionnaires_signaux_atomique) == -1)      if (pipe((*s_etat_processus).pipe_signaux) != 0)
     {      {
         pthread_mutex_lock(&((*s_etat_processus).mutex_fork));          (*s_etat_processus).erreur_systeme = d_es_processus;
         BUG(1, uprintf("Unlock error !\n"));          return(d_erreur);
         return;  
     }      }
   
 #   ifndef SEMAPHORES_NOMMES      pipe_signaux = (*s_etat_processus).pipe_signaux[1];
     if (sem_getvalue(&semaphore_gestionnaires_signaux, &semaphore) != 0)  
 #   else      if (pthread_attr_init(&attributs) != 0)
     if (sem_getvalue(semaphore_gestionnaires_signaux, &semaphore) != 0)  
 #   endif  
     {      {
         pthread_mutex_lock(&((*s_etat_processus).mutex_fork));          (*s_etat_processus).erreur_systeme = d_es_processus;
         BUG(1, uprintf("Unlock error !\n"));          return(d_erreur);
         return;  
     }      }
   
 #   ifndef SEMAPHORES_NOMMES      if (pthread_attr_setdetachstate(&attributs, PTHREAD_CREATE_JOINABLE) != 0)
     while(sem_wait(&semaphore_gestionnaires_signaux) == -1)  
 #   else  
     while(sem_wait(semaphore_gestionnaires_signaux) == -1)  
 #   endif  
     {      {
         if (errno != EINTR)          (*s_etat_processus).erreur_systeme = d_es_processus;
         {          return(d_erreur);
             pthread_mutex_lock(&((*s_etat_processus).mutex_fork));  
             BUG(1, uprintf("Unlock error !\n"));  
             return;  
         }  
     }      }
   
     if (pthread_mutex_unlock(&mutex_gestionnaires_signaux_atomique) != 0)      if (pthread_create(&((*s_etat_processus).thread_signaux), &attributs,
               thread_signaux, s_etat_processus) != 0)
     {      {
         pthread_mutex_lock(&((*s_etat_processus).mutex_fork));          (*s_etat_processus).erreur_systeme = d_es_processus;
         BUG(1, uprintf("Unlock error !\n"));          return(d_erreur);
         return;  
     }      }
   
     if (pthread_mutex_lock(&((*s_etat_processus).mutex_fork)) != 0)      if (pthread_attr_destroy(&attributs) != 0)
     {      {
         BUG(1, uprintf("Unlock error !\n"));          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return(d_erreur);
     }      }
   
     if (semaphore == 1)      return(d_absence_erreur);
   }
   
   logical1
   arret_thread_signaux(struct_processus *s_etat_processus)
   {
       unsigned char       signal;
       ssize_t             n;
   
       signal = (unsigned char ) (rpl_sigmax & 0xFF);
   
       do
     {      {
         if (pthread_mutex_unlock(&mutex_liste_threads) != 0)          n = write_atomic(s_etat_processus, (*s_etat_processus).pipe_signaux[1],
                   &signal, sizeof(signal));
   
           if (n < 0)
         {          {
             BUG(1, uprintf("Unlock error !\n"));              return(d_erreur);
             return;          }
       } while(n != 1);
   
       pthread_join((*s_etat_processus).thread_signaux, NULL);
   
       close((*s_etat_processus).pipe_signaux[1]);
       return(d_absence_erreur);
   }
   
   void *
   thread_signaux(void *argument)
   {
       int                     *pipe;
   
       sigset_t                masque;
   
       struct pollfd           fds;
   
       struct_processus        *s_etat_processus;
   
       unsigned char           signal;
   
       s_etat_processus = (struct_processus *) argument;
       pipe = (*s_etat_processus).pipe_signaux;
       fds.fd = pipe[0];
       fds.events = POLLIN;
   
       sigfillset(&masque);
       pthread_sigmask(SIG_BLOCK, &masque, NULL);
   
       do
       {
           fds.revents = 0;
   
           while(poll(&fds, 1, -1) == -1)
           {
               if (errno != EINTR)
               {
                   close((*s_etat_processus).pipe_signaux[0]);
                   pthread_exit(NULL);
               }
           }
   
           if (read_atomic(s_etat_processus, fds.fd, &signal, 1) != 1)
           {
               close((*s_etat_processus).pipe_signaux[0]);
               pthread_exit(NULL);
           }
   
           if (signal != (0xFF & rpl_sigmax))
           {
               envoi_signal_processus(getpid(), signal, d_faux);
               // Un signal SIGUSR2 est envoyé par le thread de surveillance
               // des signaux jusqu'à ce que les signaux soient tous traités.
           }
       } while(signal != (0xFF & rpl_sigmax));
   
       close((*s_etat_processus).pipe_signaux[0]);
       pthread_exit(NULL);
   }
   
   
   static inline void
   _write(int fd, const void *buf, size_t count)
   {
       ssize_t         ios;
   
       while((ios = write(fd, buf, count)) == -1)
       {
           if (errno != EINTR)
           {
               break;
         }          }
     }      }
   
     return;      return;
 }  }
   
 #define test_signal(signal) \  
     if (signal_test == SIGTEST) { signal_test = signal; return; }  
   
 // Récupération des signaux  // Récupération des signaux
 // - SIGINT (arrêt au clavier)  // - SIGINT  (arrêt au clavier)
 // - SIGTERM (signal d'arrêt en provenance du système)  // - SIGTERM (signal d'arrêt en provenance du système)
   
 void  void
 interruption1(int signal)  interruption1(int signal)
 {  {
       unsigned char       signal_tronque;
   
     test_signal(signal);      test_signal(signal);
   
     switch(signal)      switch(signal)
     {      {
         case SIGINT:          case SIGINT:
             envoi_signal_processus(getpid(), rpl_sigint);              signal_tronque = (unsigned char) (rpl_sigint & 0xFF);
               _write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
             break;              break;
   
         case SIGTERM:          case SIGTERM:
             envoi_signal_processus(getpid(), rpl_sigterm);              signal_tronque = (unsigned char) (rpl_sigterm & 0xFF);
               _write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
               break;
   
           case SIGUSR1:
               signal_tronque = (unsigned char) (rpl_sigalrm & 0xFF);
               _write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
             break;              break;
   
         case SIGALRM:          default:
             envoi_signal_processus(getpid(), rpl_sigalrm);              // SIGUSR2
             break;              break;
     }      }
   
     return;      return;
 }  }
   
   // Récupération des signaux
   // - SIGFSTP
   //
   // ATTENTION :
   // Le signal SIGFSTP provient de la mort du processus de contrôle.
   // Sous certains systèmes (Linux...), la mort du terminal de contrôle
   // se traduit par l'envoi d'un SIGHUP au processus. Sur d'autres
   // (SunOS), le processus reçoit un SIGFSTP avec une structure siginfo
   // non initialisée (pointeur NULL) issue de TERMIO.
   
   void
   interruption2(int signal)
   {
       unsigned char       signal_tronque;
   
       test_signal(signal);
   
       signal_tronque = (unsigned char) (rpl_sigtstp & 0xFF);
       _write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
   
       return;
   }
   
   void
   interruption3(int signal)
   {
       // Si on passe par ici, c'est qu'il est impossible de récupérer
       // l'erreur d'accès à la mémoire. On sort donc du programme quitte à
       // ce qu'il reste des processus orphelins.
   
       unsigned char       message_1[] = "+++System : Uncaught access violation\n"
                                   "+++System : Aborting !\n";
       unsigned char       message_2[] = "+++System : Stack overflow\n"
                                   "+++System : Aborting !\n";
   
       test_signal(signal);
   
       if (pid_processus_pere == getpid())
       {
           kill(pid_processus_pere, SIGUSR1);
       }
   
   #   pragma GCC diagnostic push
   #   pragma GCC diagnostic ignored "-Wunused-result"
   
       if (signal != SIGUSR2)
       {
           write(STDERR_FILENO, message_1, strlen(message_1));
       }
       else
       {
           write(STDERR_FILENO, message_2, strlen(message_2));
       }
   
   #   pragma GCC diagnostic pop
   
       _exit(EXIT_FAILURE);
   }
   
   // Récupération des signaux
   // - SIGHUP
   
   void
   interruption4(int signal)
   {
       unsigned char       signal_tronque;
   
       test_signal(signal);
   
       signal_tronque = (unsigned char) (rpl_sighup & 0xFF);
       _write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
   
       return;
   }
   
   // Récupération des signaux
   // - SIGPIPE
   
   void
   interruption5(int signal)
   {
       unsigned char       message[] = "+++System : SIGPIPE\n"
                                   "+++System : Aborting !\n";
       unsigned char       signal_tronque;
   
       test_signal(signal);
   
   #   pragma GCC diagnostic push
   #   pragma GCC diagnostic ignored "-Wunused-result"
   
       if (pid_processus_pere == getpid())
       {
           signal_tronque = (unsigned char) (rpl_sigalrm & 0xFF);
           _write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
       }
   
       write(STDERR_FILENO, message, strlen(message));
   
   #   pragma GCC diagnostic pop
   
       return;
   }
   
 inline static void  inline static void
 signal_alrm(struct_processus *s_etat_processus, pid_t pid)  signal_alrm(struct_processus *s_etat_processus, pid_t pid)
 {  {
Line 1477  signal_alrm(struct_processus *s_etat_pro Line 1921  signal_alrm(struct_processus *s_etat_pro
         {          {
             // On n'est pas dans le processus père, on remonte le signal.              // On n'est pas dans le processus père, on remonte le signal.
             envoi_signal_processus((*s_etat_processus).pid_processus_pere,              envoi_signal_processus((*s_etat_processus).pid_processus_pere,
                     rpl_sigalrm);                      rpl_sigalrm, d_faux);
         }          }
         else          else
         {          {
Line 1506  inline static void Line 1950  inline static void
 signal_term(struct_processus *s_etat_processus, pid_t pid)  signal_term(struct_processus *s_etat_processus, pid_t pid)
 {  {
     struct_processus        *s_thread_principal;      struct_processus        *s_thread_principal;
     volatile sig_atomic_t   exclusion = 0;      pthread_mutex_t         exclusion = PTHREAD_MUTEX_INITIALIZER;
   
     verrouillage_gestionnaire_signaux(s_etat_processus);      verrouillage_gestionnaire_signaux(s_etat_processus);
   
Line 1522  signal_term(struct_processus *s_etat_pro Line 1966  signal_term(struct_processus *s_etat_pro
         if ((*s_etat_processus).pid_processus_pere != getpid())          if ((*s_etat_processus).pid_processus_pere != getpid())
         {          {
             envoi_signal_processus((*s_etat_processus).pid_processus_pere,              envoi_signal_processus((*s_etat_processus).pid_processus_pere,
                     rpl_sigterm);                      rpl_sigterm, d_faux);
         }          }
         else          else
         {          {
             (*s_etat_processus).var_volatile_traitement_sigint = -1;              (*s_etat_processus).var_volatile_traitement_sigint = -1;
   
             while(exclusion == 1);              pthread_mutex_lock(&exclusion);
             exclusion = 1;  
   
             if ((*s_etat_processus).var_volatile_requete_arret == -1)              if ((*s_etat_processus).var_volatile_requete_arret == -1)
             {              {
                 deverrouillage_gestionnaire_signaux(s_etat_processus);                  deverrouillage_gestionnaire_signaux(s_etat_processus);
                 exclusion = 0;                  pthread_mutex_unlock(&exclusion);
                 return;                  return;
             }              }
   
             (*s_etat_processus).var_volatile_requete_arret = -1;              (*s_etat_processus).var_volatile_requete_arret = -1;
             (*s_etat_processus).var_volatile_alarme = -1;              (*s_etat_processus).var_volatile_alarme = -1;
   
             exclusion = 0;              pthread_mutex_unlock(&exclusion);
         }          }
     }      }
     else      else
Line 1561  inline static void Line 2004  inline static void
 signal_int(struct_processus *s_etat_processus, pid_t pid)  signal_int(struct_processus *s_etat_processus, pid_t pid)
 {  {
     struct_processus        *s_thread_principal;      struct_processus        *s_thread_principal;
     volatile sig_atomic_t   exclusion = 0;      pthread_mutex_t         exclusion = PTHREAD_MUTEX_INITIALIZER;
   
     verrouillage_gestionnaire_signaux(s_etat_processus);      verrouillage_gestionnaire_signaux(s_etat_processus);
   
Line 1577  signal_int(struct_processus *s_etat_proc Line 2020  signal_int(struct_processus *s_etat_proc
         if ((*s_etat_processus).pid_processus_pere != getpid())          if ((*s_etat_processus).pid_processus_pere != getpid())
         {          {
             envoi_signal_processus((*s_etat_processus).pid_processus_pere,              envoi_signal_processus((*s_etat_processus).pid_processus_pere,
                     rpl_sigint);                      rpl_sigint, d_faux);
         }          }
         else          else
         {          {
             (*s_etat_processus).var_volatile_traitement_sigint = -1;              (*s_etat_processus).var_volatile_traitement_sigint = -1;
   
             while(exclusion == 1);              pthread_mutex_lock(&exclusion);
             exclusion = 1;  
   
             if ((*s_etat_processus).var_volatile_requete_arret == -1)              if ((*s_etat_processus).var_volatile_requete_arret == -1)
             {              {
                 deverrouillage_gestionnaire_signaux(s_etat_processus);                  deverrouillage_gestionnaire_signaux(s_etat_processus);
                 exclusion = 0;                  pthread_mutex_unlock(&exclusion);
                 return;                  return;
             }              }
   
Line 1607  signal_int(struct_processus *s_etat_proc Line 2049  signal_int(struct_processus *s_etat_proc
             (*s_etat_processus).var_volatile_requete_arret = -1;              (*s_etat_processus).var_volatile_requete_arret = -1;
             (*s_etat_processus).var_volatile_alarme = -1;              (*s_etat_processus).var_volatile_alarme = -1;
   
             exclusion = 0;              pthread_mutex_unlock(&exclusion);
         }          }
     }      }
     else      else
Line 1623  signal_int(struct_processus *s_etat_proc Line 2065  signal_int(struct_processus *s_etat_proc
     return;      return;
 }  }
   
 // Récupération des signaux  
 // - SIGFSTP  
 //  
 // ATTENTION :  
 // Le signal SIGFSTP provient de la mort du processus de contrôle.  
 // Sous certains systèmes (Linux...), la mort du terminal de contrôle  
 // se traduit par l'envoi d'un SIGHUP au processus. Sur d'autres  
 // (SunOS), le processus reçoit un SIGFSTP avec une structure siginfo  
 // non initialisée (pointeur NULL) issue de TERMIO.  
   
 void  
 interruption2(int signal)  
 {  
     test_signal(signal);  
     envoi_signal_processus(getpid(), rpl_sigtstp);  
     return;  
 }  
   
 static inline void  static inline void
 signal_tstp(struct_processus *s_etat_processus, pid_t pid)  signal_tstp(struct_processus *s_etat_processus, pid_t pid)
 {  {
Line 1666  signal_tstp(struct_processus *s_etat_pro Line 2090  signal_tstp(struct_processus *s_etat_pro
         if ((*s_etat_processus).var_volatile_processus_pere == 0)          if ((*s_etat_processus).var_volatile_processus_pere == 0)
         {          {
             envoi_signal_processus((*s_etat_processus).pid_processus_pere,              envoi_signal_processus((*s_etat_processus).pid_processus_pere,
                     rpl_sigtstp);                      rpl_sigtstp, d_faux);
         }          }
         else          else
         {          {
Line 1688  signal_tstp(struct_processus *s_etat_pro Line 2112  signal_tstp(struct_processus *s_etat_pro
     return;      return;
 }  }
   
 void  static void
 interruption3(int signal)  sortie_interruption_depassement_pile(void *arg1, void *arg2, void *arg3)
 {  {
     // Si on passe par ici, c'est qu'il est impossible de récupérer      switch((*((volatile int *) arg1)))
     // l'erreur d'accès à la mémoire. On sort donc du programme quitte à      {
     // ce qu'il reste des processus orphelins.          case 1:
               longjmp(contexte_ecriture, -1);
               break;
   
     unsigned char       message[] = "+++System : Uncaught access violation\n"          case 2:
                                 "+++System : Aborting !\n";              longjmp(contexte_impression, -1);
               break;
       }
   
     test_signal(signal);      return;
   }
   
     if (pid_processus_pere == getpid())  #ifdef HAVE_SIGSEGV_RECOVERY
   void
   interruption_depassement_pile(int urgence, stackoverflow_context_t scp)
   {
       if ((urgence == 0) && (routine_recursive != 0))
     {      {
         kill(pid_processus_pere, SIGALRM);          // On peut tenter de récupérer le dépassement de pile. Si la variable
           // 'routine_recursive' est non nulle, on récupère l'erreur.
   
           sigsegv_leave_handler(sortie_interruption_depassement_pile,
                   (void *) &routine_recursive, NULL, NULL);
     }      }
   
     write(STDERR_FILENO, message, strlen(message));      // Ici, la panique est totale et il vaut mieux quitter l'application.
     _exit(EXIT_FAILURE);      interruption3(SIGUSR2);
       return;
 }  }
   #endif
   
 #if 0  int
 // Utiliser libsigsegv  interruption_violation_access(void *adresse_fautive, int gravite)
 void INTERRUPTION3_A_FIXER()  
 {  {
     pthread_t               thread;      unsigned char       message[] = "+++System : Trying to catch access "
                                   "violation\n";
     struct_processus        *s_etat_processus;  
   
     test_signal(signal);      static int          compteur_erreur = 0;
     verrouillage_gestionnaire_signaux(s_etat_processus);  
   
     if ((s_etat_processus = recherche_thread(getpid(), pthread_self())) == NULL)      if ((gravite == 0) && (routine_recursive != 0))
     {      {
         deverrouillage_gestionnaire_signaux(s_etat_processus);          // Il peut s'agir d'un dépassement de pile.
         return;  
   #       ifdef HAVE_SIGSEGV_RECOVERY
               sigsegv_leave_handler(sortie_interruption_depassement_pile,
                       (void *) &routine_recursive, NULL, NULL);
   #       else
               sortie_interruption_depassement_pile((void *) &routine_recursive,
                       NULL, NULL);
   #       endif
     }      }
   
     if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)      // On est dans une bonne vieille violation d'accès. On essaie
       // de fermer au mieux l'application.
   
       compteur_erreur++;
   
       if (compteur_erreur >= 2)
     {      {
         printf("[%d] SIGSEGV (thread %llu)\n", (int) getpid(),          // Erreurs multiples, on arrête l'application.
                 (unsigned long long) pthread_self());          interruption3(SIGSEGV);
         fflush(stdout);          return(0);
     }      }
   
     if ((*s_etat_processus).var_volatile_recursivite == -1)  #   pragma GCC diagnostic push
   #   pragma GCC diagnostic ignored "-Wunused-result"
   
       write(STDERR_FILENO, message, strlen(message));
   
   #   pragma GCC diagnostic pop
   
       if (pid_processus_pere == getpid())
     {      {
         // Segfault dans un appel de fonction récursive          longjmp(contexte_initial, -1);
         deverrouillage_gestionnaire_signaux(s_etat_processus);          return(1);
         longjmp(contexte, -1);  
     }      }
     else      else
     {      {
         // Segfault dans une routine interne          longjmp(contexte_processus, -1);
         if (strncmp(getenv("LANG"), "fr", 2) == 0)          return(1);
         {      }
             printf("+++Système : Violation d'accès\n");  
         }  
         else  
         {  
             printf("+++System : Access violation\n");  
         }  
   
         fflush(stdout);      // On renvoie 0 parce qu'on décline toute responsabilité quant à la
       // suite des événements...
       return(0);
   }
   
         (*s_etat_processus).compteur_violation_d_acces++;  // Traitement de rpl_sigstart
   
         if ((*s_etat_processus).compteur_violation_d_acces > 1)  static inline void
         {  signal_start(struct_processus *s_etat_processus, pid_t pid)
             // On vient de récupérer plus d'une erreur de segmentation  {
             // dans le même processus ou le même thread. L'erreur n'est pas      struct_processus        *s_thread_principal;
             // récupérable et on sort autoritairement du programme. Il peut  
             // rester des processus orphelins en attente !  
   
             if (strncmp(getenv("LANG"), "fr", 2) == 0)      verrouillage_gestionnaire_signaux(s_etat_processus);
             {  
                 printf("+++Système : Violation d'accès, tentative de "  
                         "terminaison de la tâche\n");  
                 printf("             (defauts multiples)\n");  
             }  
             else  
             {  
                 printf("+++System : Access violation, trying to kill task "  
                         "(multiple defaults)\n");  
             }  
   
             fflush(stdout);      if (pid == getpid())
       {
           (*s_etat_processus).demarrage_fils = d_vrai;
       }
       else
       {
           // Envoi d'un signal au thread maître du groupe.
   
             deverrouillage_gestionnaire_signaux(s_etat_processus);          if ((s_thread_principal = recherche_thread_principal(getpid()))
             exit(EXIT_FAILURE);                  != NULL)
         }  
         else  
         {          {
             // Première erreur de segmentation. On essaie de terminer              envoi_signal_contexte(s_thread_principal, rpl_sigstart);
             // proprement le thread ou le processus. Le signal ne peut être  
             // envoyé que depuis le même processus.  
   
             if (recherche_thread_principal(getpid(), &thread) == d_vrai)  
             {  
                 if (pthread_equal(thread, pthread_self()) != 0)  
                 {  
                     deverrouillage_gestionnaire_signaux(s_etat_processus);  
   
                     if ((*s_etat_processus).pid_processus_pere != getpid())  
                     {  
                         // On est dans le thread principal d'un processus.  
   
                         longjmp(contexte_processus, -1);  
                     }  
                     else  
                     {  
                         // On est dans le thread principal du processus  
                         // père.  
   
                         longjmp(contexte_initial, -1);  
                     }  
                 }  
                 else  
                 {  
                     // On est dans un thread fils d'un thread principal.  
   
                     deverrouillage_gestionnaire_signaux(s_etat_processus);  
                     longjmp(contexte_thread, -1);  
                 }  
             }  
   
             // Là, on ramasse les miettes puisque le thread n'existe plus  
             // dans la base (corruption de la mémoire).  
   
             deverrouillage_gestionnaire_signaux(s_etat_processus);  
             longjmp(contexte_initial, -1);  
         }          }
     }      }
   
     deverrouillage_gestionnaire_signaux(s_etat_processus);      deverrouillage_gestionnaire_signaux(s_etat_processus);
     return;      return;
 }  }
 #endif  
   
 // Traitement de rpl_sigstart  
   
 static inline void  
 signal_start(struct_processus *s_etat_processus, pid_t pid)  
 {  
     (*s_etat_processus).demarrage_fils = d_vrai;  
     return;  
 }  
   
 // Traitement de rpl_sigcont  // Traitement de rpl_sigcont
   
 static inline void  static inline void
 signal_cont(struct_processus *s_etat_processus, pid_t pid)  signal_cont(struct_processus *s_etat_processus, pid_t pid)
 {  {
     (*s_etat_processus).redemarrage_processus = d_vrai;      struct_processus        *s_thread_principal;
   
       verrouillage_gestionnaire_signaux(s_etat_processus);
   
       if (pid == getpid())
       {
           (*s_etat_processus).redemarrage_processus = d_vrai;
       }
       else
       {
           // Envoi d'un signal au thread maître du groupe.
   
           if ((s_thread_principal = recherche_thread_principal(getpid()))
                   != NULL)
           {
               envoi_signal_contexte(s_thread_principal, rpl_sigcont);
           }
       }
   
       deverrouillage_gestionnaire_signaux(s_etat_processus);
     return;      return;
 }  }
   
Line 1856  signal_stop(struct_processus *s_etat_pro Line 2271  signal_stop(struct_processus *s_etat_pro
   
     if (pid == getpid())      if (pid == getpid())
     {      {
         if ((s_etat_processus = recherche_thread(getpid(), pthread_self()))  
                 == NULL)  
         {  
             deverrouillage_gestionnaire_signaux(s_etat_processus);  
             return;  
         }  
   
         if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)          if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)
         {          {
             printf("[%d] RPL/SIGFSTOP (thread %llu)\n", (int) getpid(),              printf("[%d] RPL/SIGSTOP (thread %llu)\n", (int) getpid(),
                     (unsigned long long) pthread_self());                      (unsigned long long) pthread_self());
             fflush(stdout);              fflush(stdout);
         }          }
Line 1888  signal_stop(struct_processus *s_etat_pro Line 2296  signal_stop(struct_processus *s_etat_pro
     }      }
     else      else
     {      {
         if ((s_etat_processus = recherche_thread(getpid(), pthread_self()))  
                 == NULL)  
         {  
             deverrouillage_gestionnaire_signaux(s_etat_processus);  
             return;  
         }  
   
         // Envoi d'un signal au thread maître du groupe.          // Envoi d'un signal au thread maître du groupe.
   
         if ((s_thread_principal = recherche_thread_principal(getpid()))          if ((s_thread_principal = recherche_thread_principal(getpid()))
Line 1932  signal_inject(struct_processus *s_etat_p Line 2333  signal_inject(struct_processus *s_etat_p
     return;      return;
 }  }
   
 // Récupération des signaux  
 // - SIGPIPE  
   
 void  
 interruption5(int signal)  
 {  
     unsigned char       message[] = "+++System : SIGPIPE\n"  
                                 "+++System : Aborting !\n";  
   
     test_signal(signal);  
   
     if (pid_processus_pere == getpid())  
     {  
         envoi_signal_processus(pid_processus_pere, rpl_sigalrm);  
     }  
   
     write(STDERR_FILENO, message, strlen(message));  
     return;  
 }  
   
 static inline void  static inline void
 signal_urg(struct_processus *s_etat_processus, pid_t pid)  signal_urg(struct_processus *s_etat_processus, pid_t pid)
Line 1961  signal_urg(struct_processus *s_etat_proc Line 2343  signal_urg(struct_processus *s_etat_proc
   
     if (pid == getpid())      if (pid == getpid())
     {      {
         if ((s_etat_processus = recherche_thread(getpid(), pthread_self()))  
                 == NULL)  
         {  
             deverrouillage_gestionnaire_signaux(s_etat_processus);  
             return;  
         }  
   
         if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)          if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)
         {          {
             printf("[%d] RPL/SIGURG (thread %llu)\n", (int) getpid(),              printf("[%d] RPL/SIGURG (thread %llu)\n", (int) getpid(),
Line 2017  signal_abort(struct_processus *s_etat_pr Line 2392  signal_abort(struct_processus *s_etat_pr
   
     if (pid == getpid())      if (pid == getpid())
     {      {
         if ((s_etat_processus = recherche_thread(getpid(), pthread_self()))  
                 == NULL)  
         {  
             deverrouillage_gestionnaire_signaux(s_etat_processus);  
             return;  
         }  
   
         (*s_etat_processus).arret_depuis_abort = -1;          (*s_etat_processus).arret_depuis_abort = -1;
   
         if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)  
         {  
             printf("[%d] SIGFABORT (thread %llu)\n", (int) getpid(),  
                     (unsigned long long) pthread_self());  
             fflush(stdout);  
         }  
   
         /*          /*
          * var_globale_traitement_retarde_stop :           * var_globale_traitement_retarde_stop :
          *  0 -> traitement immédiat           *  0 -> traitement immédiat
Line 2051  signal_abort(struct_processus *s_etat_pr Line 2412  signal_abort(struct_processus *s_etat_pr
     }      }
     else      else
     {      {
         if ((s_etat_processus = recherche_thread(getpid(), pthread_self()))  
                 == NULL)  
         {  
             deverrouillage_gestionnaire_signaux(s_etat_processus);  
             return;  
         }  
   
         (*s_etat_processus).arret_depuis_abort = -1;          (*s_etat_processus).arret_depuis_abort = -1;
   
         // Envoi d'un signal au thread maître du groupe.          // Envoi d'un signal au thread maître du groupe.
Line 2073  signal_abort(struct_processus *s_etat_pr Line 2427  signal_abort(struct_processus *s_etat_pr
     return;      return;
 }  }
   
 // Récupération des signaux  
 // - SIGHUP  
   
 void  
 interruption4(int signal)  
 {  
     test_signal(signal);  
     envoi_signal_processus(getpid(), rpl_sighup);  
     return;  
 }  
   
 static inline void  static inline void
 signal_hup(struct_processus *s_etat_processus, pid_t pid)  signal_hup(struct_processus *s_etat_processus, pid_t pid)
Line 2099  signal_hup(struct_processus *s_etat_proc Line 2443  signal_hup(struct_processus *s_etat_proc
         return;          return;
     }      }
   
     snprintf(nom, 8 + 64 + 1, "rpl-out-%lu-%lu", (unsigned long) getpid(),      snprintf(nom, 8 + 64 + 1, "rpl-out-%llu-%llu",
             (unsigned long) pthread_self());              (unsigned long long) getpid(),
               (unsigned long long) pthread_self());
   
   #   pragma GCC diagnostic push
   #   pragma GCC diagnostic ignored "-Wunused-result"
   
     if ((fichier = fopen(nom, "w+")) != NULL)      if ((fichier = fopen(nom, "w+")) != NULL)
     {      {
Line 2112  signal_hup(struct_processus *s_etat_proc Line 2460  signal_hup(struct_processus *s_etat_proc
   
     freopen("/dev/null", "r", stdin);      freopen("/dev/null", "r", stdin);
   
   #   pragma GCC diagnostic pop
   
     if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)      if (((*s_etat_processus).type_debug & d_debug_signaux) != 0)
     {      {
         printf("[%d] SIGHUP (thread %llu)\n", (int) getpid(),          printf("[%d] RPL/SIGHUP (thread %llu)\n", (int) getpid(),
                 (unsigned long long) pthread_self());                  (unsigned long long) pthread_self());
         fflush(stdout);          fflush(stdout);
     }      }
Line 2128  traitement_exceptions_gsl(const char *re Line 2478  traitement_exceptions_gsl(const char *re
         int line, int gsl_errno)          int line, int gsl_errno)
 {  {
     code_erreur_gsl = gsl_errno;      code_erreur_gsl = gsl_errno;
     envoi_signal_processus(getpid(), rpl_sigexcept);      envoi_signal_processus(getpid(), rpl_sigexcept, d_faux);
     return;      return;
 }  }
   
Line 2153  static inline void Line 2503  static inline void
 envoi_interruptions(struct_processus *s_etat_processus, enum signaux_rpl signal,  envoi_interruptions(struct_processus *s_etat_processus, enum signaux_rpl signal,
         pid_t pid_source)          pid_t pid_source)
 {  {
     unsigned char       message[] = "+++System : Spurious signa !\n";  
   
     switch(signal)      switch(signal)
     {      {
           case rpl_signull:
               break;
   
         case rpl_sigint:          case rpl_sigint:
             signal_int(s_etat_processus, pid_source);              signal_int(s_etat_processus, pid_source);
             break;              break;
Line 2206  envoi_interruptions(struct_processus *s_ Line 2557  envoi_interruptions(struct_processus *s_
             break;              break;
   
         default:          default:
             write(STDERR_FILENO, message, strlen(message));              if ((*s_etat_processus).langue == 'F')
               {
                   printf("+++System : Signal inconnu (%d) !\n", signal);
               }
               else
               {
                   printf("+++System : Spurious signal (%d) !\n", signal);
               }
   
             break;              break;
     }      }
   
Line 2223  scrutation_interruptions(struct_processu Line 2582  scrutation_interruptions(struct_processu
     // à lire. Les pointeurs d'écriture pointent sur les prochains éléments à      // à lire. Les pointeurs d'écriture pointent sur les prochains éléments à
     // écrire.      // écrire.
   
     if (pthread_mutex_trylock(&((*s_queue_signaux).mutex)) == 0)      if (sem_trywait(semaphore_queue_signaux) == 0)
     {      {
         if ((*s_queue_signaux).pointeur_lecture !=          while((*s_queue_signaux).pointeur_lecture !=
                 (*s_queue_signaux).pointeur_ecriture)                  (*s_queue_signaux).pointeur_ecriture)
         {          {
             // Il y a un signal en attente dans le segment partagé. On le              // Il y a un signal en attente dans le segment partagé. On le
             // traite.              // traite.
   
               if (pthread_mutex_lock(&mutex_liste_threads) != 0)
               {
                   return;
               }
   
             envoi_interruptions(s_etat_processus,              envoi_interruptions(s_etat_processus,
                     (*s_queue_signaux).queue[(*s_queue_signaux)                      (*s_queue_signaux).queue[(*s_queue_signaux)
                     .pointeur_lecture].signal, (*s_queue_signaux).queue                      .pointeur_lecture].signal, (*s_queue_signaux).queue
Line 2238  scrutation_interruptions(struct_processu Line 2602  scrutation_interruptions(struct_processu
             (*s_queue_signaux).pointeur_lecture =              (*s_queue_signaux).pointeur_lecture =
                     ((*s_queue_signaux).pointeur_lecture + 1)                      ((*s_queue_signaux).pointeur_lecture + 1)
                     % LONGUEUR_QUEUE_SIGNAUX;                      % LONGUEUR_QUEUE_SIGNAUX;
   
   #           ifndef IPCS_SYSV
               if (msync(s_queue_signaux, sizeof(s_queue_signaux),
                       MS_ASYNC | MS_INVALIDATE) != 0)
               {
                   sem_post(semaphore_queue_signaux);
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
   #           endif
   
               if (pthread_mutex_unlock(&mutex_liste_threads) != 0)
               {
                   return;
               }
   
               while(sem_wait(semaphore_signalisation) != 0)
               {
                   if (errno != EINTR)
                   {
                       (*s_etat_processus).erreur_systeme = d_es_processus;
                       return;
                   }
               }
         }          }
   
         pthread_mutex_unlock(&((*s_queue_signaux).mutex));          sem_post(semaphore_queue_signaux);
     }      }
   
     // Interruptions qui arrivent depuis le groupe courant de threads.      // Interruptions qui arrivent depuis le groupe courant de threads.
   
     if (pthread_mutex_trylock(&mutex_interruptions) == 0)      if (pthread_mutex_trylock(&mutex_liste_threads) == 0)
     {      {
         if ((*s_etat_processus).pointeur_signal_lecture !=          if (pthread_mutex_trylock(&((*s_etat_processus).mutex_signaux)) == 0)
                 (*s_etat_processus).pointeur_signal_ecriture)  
         {          {
             // Il y a un signal dans la queue du thread courant. On le traite.              while((*s_etat_processus).pointeur_signal_lecture !=
                       (*s_etat_processus).pointeur_signal_ecriture)
               {
                   // Il y a un signal dans la queue du thread courant.
                   // On le traite.
   
             envoi_interruptions(s_etat_processus,                  envoi_interruptions(s_etat_processus,
                     (*s_etat_processus).signaux_en_queue                          (*s_etat_processus).signaux_en_queue
                     [(*s_etat_processus).pointeur_signal_lecture],                          [(*s_etat_processus).pointeur_signal_lecture],
                     getpid());                          getpid());
             (*s_etat_processus).pointeur_signal_lecture =                  (*s_etat_processus).pointeur_signal_lecture =
                     ((*s_etat_processus).pointeur_signal_lecture + 1)                          ((*s_etat_processus).pointeur_signal_lecture + 1)
                     % LONGUEUR_QUEUE_SIGNAUX;                          % LONGUEUR_QUEUE_SIGNAUX;
   
                   while(sem_wait(semaphore_signalisation) != 0)
                   {
                       if (errno != EINTR)
                       {
                           if (pthread_mutex_unlock(&mutex_liste_threads) != 0)
                           {
                               (*s_etat_processus).erreur_systeme = d_es_processus;
                               return;
                           }
   
                           (*s_etat_processus).erreur_systeme = d_es_processus;
                           return;
                       }
                   }
               }
   
               pthread_mutex_unlock(&((*s_etat_processus).mutex_signaux));
         }          }
   
         pthread_mutex_unlock(&mutex_interruptions);          pthread_mutex_unlock(&mutex_liste_threads);
     }      }
   
     return;      return;
 }  }
   
   
   /*
   ================================================================================
     Fonction renvoyant le nom du segment de mémoire partagée en fonction
     du pid du processus.
   ================================================================================
     Entrée : Chemin absolue servant de racine, pid du processus
   --------------------------------------------------------------------------------
     Sortie : NULL ou nom du segment
   --------------------------------------------------------------------------------
     Effet de bord : Néant
   ================================================================================
   */
   
   static unsigned char *
   nom_segment(unsigned char *chemin, pid_t pid)
   {
       unsigned char               *fichier;
   
   #   ifdef IPCS_SYSV // !POSIX
   #       ifndef OS2 // !OS2
   
               if ((fichier = sys_malloc((strlen(chemin) + 1 + 256 + 1) *
                       sizeof(unsigned char))) == NULL)
               {
                   return(NULL);
               }
   
               sprintf(fichier, "%s/RPL-SIGQUEUES-%d", chemin, (int) pid);
   #       else // OS2
               if ((fichier = sys_malloc((10 + 256 + 1) * sizeof(unsigned char)))
                       == NULL)
               {
                   return(NULL);
               }
   
               sprintf(fichier, "\\SHAREMEM\\RPL-SIGQUEUES-%d", (int) pid);
   #       endif // OS2
   #   else // POSIX
   
           if ((fichier = sys_malloc((1 + 256 + 1) *
                   sizeof(unsigned char))) == NULL)
           {
               return(NULL);
           }
   
           sprintf(fichier, "/RPL-SIGQUEUES-%d", (int) pid);
   #   endif
   
       return(fichier);
   }
   
   
   /*
   ================================================================================
     Fonctions d'envoi d'un signal à un thread ou à un processus.
   ================================================================================
     Entrée : processus et signal
   --------------------------------------------------------------------------------
     Sortie : erreur
   --------------------------------------------------------------------------------
     Effet de bord : Néant
   ================================================================================
   */
   
 int  int
 envoi_signal_processus(pid_t pid, enum signaux_rpl signal)  envoi_signal_processus(pid_t pid, enum signaux_rpl signal,
           logical1 test_ouverture)
 {  {
   #   ifndef OS2
           int                         segment;
   #   endif
   
   #   ifndef IPCS_SYSV
           sem_t                       *semaphore;
           sem_t                       *signalisation;
   #   else
           sem_t                       *semaphore;
           sem_t                       *signalisation;
   #       ifndef OS2
               int                     desc;
               key_t                   clef;
   #       endif
   #   endif
   
       struct_queue_signaux            *queue;
   
       struct timespec                 attente;
   
       unsigned char                   *nom;
   
     // Il s'agit d'ouvrir le segment de mémoire partagée, de le projeter en      // Il s'agit d'ouvrir le segment de mémoire partagée, de le projeter en
     // mémoire puis d'y inscrire le signal à traiter.      // mémoire puis d'y inscrire le signal à traiter.
   
       if (pid == getpid())
       {
           // Le signal est envoyé au même processus.
   
           if (s_queue_signaux == NULL)
           {
               return(1);
           }
   
           while(sem_wait(semaphore_queue_signaux) != 0)
           {
               if (errno != EINTR)
               {
                   return(1);
               }
           }
   
           (*s_queue_signaux).queue[(*s_queue_signaux).pointeur_ecriture]
                   .pid = pid;
           (*s_queue_signaux).queue[(*s_queue_signaux).pointeur_ecriture]
                   .signal = signal;
   
           (*s_queue_signaux).pointeur_ecriture =
                   ((*s_queue_signaux).pointeur_ecriture + 1)
                   % LONGUEUR_QUEUE_SIGNAUX;
   
   #       ifndef IPCS_SYSV
           if (msync(s_queue_signaux, sizeof(s_queue_signaux),
                   MS_ASYNC | MS_INVALIDATE) != 0)
           {
               sem_post(semaphore_queue_signaux);
               return(1);
           }
   #       endif
   
           if (sem_post(semaphore_queue_signaux) != 0)
           {
               return(1);
           }
   
           if (sem_post(semaphore_signalisation) != 0)
           {
               return(1);
           }
       }
       else
       {
           // Le signal est envoyé depuis un processus distinct.
   
   #       ifdef IPCS_SYSV
               if ((nom = nom_segment(racine_segment, pid)) == NULL)
               {
                   return(1);
               }
   
   #           ifndef OS2 // SysV
                   if (test_ouverture == d_vrai)
                   {
                       attente.tv_sec = 0;
                       attente.tv_nsec = GRANULARITE_us * 1000;
   
                       while((desc = open(nom, O_RDWR)) == -1)
                       {
                           nanosleep(&attente, NULL);
                           INCR_GRANULARITE(attente.tv_nsec);
                       }
                   }
                   else
                   {
                       if ((desc = open(nom, O_RDWR)) == -1)
                       {
                           sys_free(nom);
                           return(1);
                       }
                   }
   
                   close(desc);
   
                   if ((clef = ftok(nom, 1)) == -1)
                   {
                       sys_free(nom);
                       return(1);
                   }
   
                   sys_free(nom);
   
                   if ((segment = shmget(clef, sizeof(struct_queue_signaux), 0))
                           == -1)
                   {
                       return(1);
                   }
   
                   queue = shmat(segment, NULL, 0);
   #           else // OS/2
                   if (test_ouverture == d_vrai)
                   {
                       attente.tv_sec = 0;
                       attente.tv_nsec = GRANULARITE_us * 1000;
   
                       while(DosGetNamedSharedMem((PVOID) &queue, nom,
                               PAG_WRITE | PAG_READ) != 0)
                       {
                           nanosleep(&attente, NULL);
                           INCR_GRANULARITE(attente.tv_nsec);
                       }
                   }
                   else
                   {
                       if (DosGetNamedSharedMem((PVOID) &queue, nom,
                               PAG_WRITE | PAG_READ) != 0)
                       {
                           sys_free(nom);
                           return(1);
                       }
                   }
   
                   sys_free(nom);
   #           endif
   #       else // POSIX
               if ((nom = nom_segment(racine_segment, pid)) == NULL)
               {
                   return(1);
               }
   
               if (test_ouverture == d_vrai)
               {
                   attente.tv_sec = 0;
                   attente.tv_nsec = GRANULARITE_us * 1000;
   
                   while((segment = shm_open(nom, O_RDWR, 0)) == -1)
                   {
                       nanosleep(&attente, NULL);
                       INCR_GRANULARITE(attente.tv_nsec);
                   }
               }
               else
               {
                   if ((segment = shm_open(nom, O_RDWR, 0)) == -1)
                   {
                       sys_free(nom);
                       return(1);
                   }
               }
   
               sys_free(nom);
   
               if ((queue = mmap(NULL, sizeof(struct_queue_signaux),
                       PROT_READ | PROT_WRITE, MAP_SHARED, segment, 0)) ==
                       MAP_FAILED)
               {
                   close(segment);
                   return(1);
               }
   #       endif
   
           // À ce moment, le segment de mémoire partagée est projeté
           // dans l'espace du processus.
   
           if ((semaphore = sem_open2(pid, SEM_QUEUE)) == SEM_FAILED)
           {
   #           ifndef IPCS_SYSV // POSIX
                   if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE) != 0)
                   {
                       munmap(queue, sizeof(struct_queue_signaux));
                       close(segment);
                       return(1);
                   }
   
                   if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
                   {
                       close(segment);
                       return(1);
                   }
   
                   close(segment);
   #           else // IPCS_SYSV
   #               ifndef OS2 // SysV
                       if (shmdt(queue) != 0)
                       {
                           return(1);
                       }
   #               else // OS/2
                       // Pendant de DosGetNamedSHaredMem()
   #               endif
   #           endif
               return(1);
           }
   
           if ((signalisation = sem_open2(pid, SEM_SIGNALISATION))
                   == SEM_FAILED)
           {
   #           ifndef IPCS_SYSV // POSIX
                   if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE) != 0)
                   {
                       munmap(queue, sizeof(struct_queue_signaux));
                       close(segment);
                       sem_close(semaphore);
                       return(1);
                   }
   
                   if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
                   {
                       close(segment);
                       sem_close(semaphore);
                       return(1);
                   }
   
                   close(segment);
   #           else // IPCS_SYSV
   #               ifndef OS2 // SysV
                       if (shmdt(queue) != 0)
                       {
                           sem_close(semaphore);
                           return(1);
                       }
   #               else // OS/2
                       // Pendant de DosGetNamedSHaredMem()
   #               endif
   #           endif
   
               sem_close(semaphore);
               return(1);
           }
   
           while(sem_wait(semaphore) != 0)
           {
               if (errno != EINTR)
               {
   #               ifndef IPCS_SYSV // POSIX
                       if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE)
                               != 0)
                       {
                           munmap(queue, sizeof(struct_queue_signaux));
                           sem_close(semaphore);
                           sem_close(signalisation);
                           close(segment);
                           return(1);
                       }
   
                       if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
                       {
                           sem_close(semaphore);
                           sem_close(signalisation);
                           close(segment);
                           return(1);
                       }
   
                       close(segment);
   #               else // IPCS_SYSV
   #                   ifndef OS2 // SysV
                           if (shmdt(queue) != 0)
                           {
                               sem_close(semaphore);
                               sem_close(signalisation);
                               return(1);
                           }
   #                   else // OS/2
                           // Pendant de DosGetNamedSHaredMem()
   #                   endif
   #               endif
   
                   sem_close(semaphore);
                   sem_close(signalisation);
                   return(1);
               }
           }
   
           (*queue).queue[(*queue).pointeur_ecriture].pid = getpid();
           (*queue).queue[(*queue).pointeur_ecriture].signal = signal;
   
           (*queue).pointeur_ecriture = ((*queue).pointeur_ecriture + 1)
                   % LONGUEUR_QUEUE_SIGNAUX;
   
           if (sem_post(semaphore) != 0)
           {
   #           ifndef IPCS_SYSV // POSIX
                   if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE) != 0)
                   {
                       munmap(queue, sizeof(struct_queue_signaux));
                       close(segment);
                       sem_close(semaphore);
                       sem_close(signalisation);
                       return(1);
                   }
   
                   if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
                   {
                       close(segment);
                       sem_close(semaphore);
                       sem_close(signalisation);
                       return(1);
                   }
   
                   close(segment);
   #           else // IPCS_SYSV
   #               ifndef OS2 // SysV
                       if (shmdt(queue) != 0)
                       {
                           sem_close(semaphore);
                           sem_close(signalisation);
                           return(1);
                       }
   #               else // OS/2
                       // Pendant de DosGetNamedSHaredMem()
   #               endif
   #           endif
   
               sem_close(semaphore);
               sem_close(signalisation);
               return(1);
           }
   
           if (sem_close(semaphore) != 0)
           {
   #           ifndef IPCS_SYSV // POSIX
                   if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE) != 0)
                   {
                       munmap(queue, sizeof(struct_queue_signaux));
                       close(segment);
                       sem_close(signalisation);
                       return(1);
                   }
   
                   if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
                   {
                       close(segment);
                       sem_close(signalisation);
                       return(1);
                   }
   
                   close(segment);
   #           else // IPCS_SYSV
   #               ifndef OS2 // SysV
                       if (shmdt(queue) != 0)
                       {
                           sem_close(signalisation);
                           return(1);
                       }
   #               else // OS/2
                       // Pendant de DosGetNamedSHaredMem()
   #               endif
   #           endif
   
               sem_close(signalisation);
               return(1);
           }
   
           if (sem_post(signalisation) != 0)
           {
   #           ifndef IPCS_SYSV // POSIX
                   if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE) != 0)
                   {
                       munmap(queue, sizeof(struct_queue_signaux));
                       close(segment);
                       sem_close(signalisation);
                       return(1);
                   }
   
                   if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
                   {
                       close(segment);
                       sem_close(signalisation);
                       return(1);
                   }
   
                   close(segment);
   #           else // IPCS_SYSV
   #               ifndef OS2 // SysV
                       if (shmdt(queue) != 0)
                       {
                           sem_close(signalisation);
                           return(1);
                       }
   #               else // OS/2
                       // Pendant de DosGetNamedSHaredMem()
   #               endif
   #           endif
   
               sem_close(signalisation);
               return(1);
           }
   
           if (sem_close(signalisation) != 0)
           {
   #           ifndef IPCS_SYSV // POSIX
                   if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE) != 0)
                   {
                       munmap(queue, sizeof(struct_queue_signaux));
                       close(segment);
                       return(1);
                   }
   
                   if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
                   {
                       close(segment);
                       return(1);
                   }
   
                   close(segment);
   #           else // IPCS_SYSV
   #               ifndef OS2 // SysV
                       if (shmdt(queue) != 0)
                       {
                           return(1);
                       }
   #               else // OS/2
                       // Pendant de DosGetNamedSHaredMem()
   #               endif
   #           endif
   
               return(1);
           }
   
   #       ifndef IPCS_SYSV // POSIX
               if (msync(queue, sizeof(queue), MS_ASYNC | MS_INVALIDATE) != 0)
               {
                   munmap(queue, sizeof(struct_queue_signaux));
                   close(segment);
                   return(1);
               }
   
               if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
               {
                   close(segment);
                   return(1);
               }
   
               close(segment);
   #       else // IPCS_SYSV
   #           ifndef OS2 // SysV
                   if (shmdt(queue) != 0)
                   {
                       return(1);
                   }
   #           else // OS/2
                   // Pendant de DosGetNamedSHaredMem()
   #           endif
   #       endif
       }
   
     return(0);      return(0);
 }  }
   
 int  int
 envoi_signal_thread(pthread_t tid, enum signaux_rpl signal)  envoi_signal_thread(struct_processus *s_contexte,
           pthread_t tid, enum signaux_rpl signal)
 {  {
     // Un signal est envoyé d'un thread à un autre thread du même processus.      // Un signal est envoyé d'un thread à un autre thread du même processus.
   
       int                                     ios;
   
       struct timespec                         attente;
   
     volatile struct_liste_chainee_volatile  *l_element_courant;      volatile struct_liste_chainee_volatile  *l_element_courant;
   
     struct_processus                        *s_etat_processus;      struct_processus                        *s_etat_processus;
   
     if (pthread_mutex_lock(&mutex_liste_threads) != 0)      if (s_contexte != NULL)
     {      {
         return(1);          attente.tv_sec = 0;
           attente.tv_nsec = GRANULARITE_us * 1000;
   
           while((ios = pthread_mutex_trylock(&mutex_liste_threads)) != 0)
           {
               if (ios != EBUSY)
               {
                   return(1);
               }
   
               if (sem_post(&((*s_contexte).semaphore_fork)) != 0)
               {
                   return(1);
               }
   
               nanosleep(&attente, NULL);
               INCR_GRANULARITE(attente.tv_nsec);
   
               while(sem_wait(&((*s_contexte).semaphore_fork)) != 0)
               {
                   if (errno != EINTR)
                   {
                       return(1);
                   }
               }
           }
       }
       else
       {
           if (pthread_mutex_lock(&mutex_liste_threads) != 0)
           {
               return(1);
           }
     }      }
   
     l_element_courant = liste_threads;      l_element_courant = liste_threads;
Line 2310  envoi_signal_thread(pthread_t tid, enum Line 3284  envoi_signal_thread(pthread_t tid, enum
         return(1);          return(1);
     }      }
   
     if (pthread_mutex_lock(&mutex_interruptions) != 0)      s_etat_processus = (*((struct_thread *) (*l_element_courant).donnee))
               .s_etat_processus;
   
       if (pthread_mutex_lock(&((*s_etat_processus).mutex_signaux)) != 0)
     {      {
         pthread_mutex_unlock(&mutex_liste_threads);          pthread_mutex_unlock(&mutex_liste_threads);
         return(1);          return(1);
     }      }
   
     s_etat_processus = (*((struct_thread *) (*l_element_courant).donnee))  
             .s_etat_processus;  
   
     (*s_etat_processus).signaux_en_queue      (*s_etat_processus).signaux_en_queue
             [(*s_etat_processus).pointeur_signal_ecriture] = signal;              [(*s_etat_processus).pointeur_signal_ecriture] = signal;
     (*s_etat_processus).pointeur_signal_ecriture =      (*s_etat_processus).pointeur_signal_ecriture =
             ((*s_etat_processus).pointeur_signal_ecriture + 1)              ((*s_etat_processus).pointeur_signal_ecriture + 1)
             % LONGUEUR_QUEUE_SIGNAUX;              % LONGUEUR_QUEUE_SIGNAUX;
   
     if (pthread_mutex_unlock(&mutex_interruptions) != 0)      if (pthread_mutex_unlock(&((*s_etat_processus).mutex_signaux)) != 0)
     {      {
         pthread_mutex_unlock(&mutex_liste_threads);          pthread_mutex_unlock(&mutex_liste_threads);
         return(1);          return(1);
Line 2336  envoi_signal_thread(pthread_t tid, enum Line 3310  envoi_signal_thread(pthread_t tid, enum
         return(1);          return(1);
     }      }
   
       if (sem_post(semaphore_signalisation) != 0)
       {
           return(1);
       }
   
     return(0);      return(0);
 }  }
   
Line 2343  int Line 3322  int
 envoi_signal_contexte(struct_processus *s_etat_processus_a_signaler,  envoi_signal_contexte(struct_processus *s_etat_processus_a_signaler,
         enum signaux_rpl signal)          enum signaux_rpl signal)
 {  {
     pthread_mutex_lock(&mutex_interruptions);      pthread_mutex_lock(&((*s_etat_processus_a_signaler).mutex_signaux));
     (*s_etat_processus_a_signaler).signaux_en_queue      (*s_etat_processus_a_signaler).signaux_en_queue
             [(*s_etat_processus_a_signaler).pointeur_signal_ecriture] =              [(*s_etat_processus_a_signaler).pointeur_signal_ecriture] =
             signal;              signal;
     (*s_etat_processus_a_signaler).pointeur_signal_ecriture =      (*s_etat_processus_a_signaler).pointeur_signal_ecriture =
             ((*s_etat_processus_a_signaler).pointeur_signal_ecriture + 1)              ((*s_etat_processus_a_signaler).pointeur_signal_ecriture + 1)
             % LONGUEUR_QUEUE_SIGNAUX;              % LONGUEUR_QUEUE_SIGNAUX;
     pthread_mutex_unlock(&mutex_interruptions);      pthread_kill((*s_etat_processus_a_signaler).tid, SIGUSR2);
       pthread_mutex_unlock(&((*s_etat_processus_a_signaler).mutex_signaux));
   
       if (sem_post(semaphore_signalisation) != 0)
       {
           return(1);
       }
   
     return(0);      return(0);
 }  }
Line 2358  envoi_signal_contexte(struct_processus * Line 3343  envoi_signal_contexte(struct_processus *
   
 /*  /*
 ================================================================================  ================================================================================
   Fonction renvoyant le nom du segment de mémoire partagée en fonction    Fonction créant un segment de mémoire partagée destiné à contenir
   du pid du processus.    la queue des signaux.
 ================================================================================  ================================================================================
   Entrée : Chemin absolue servant de racine, pid du processus    Entrée : structure de description du processus
 --------------------------------------------------------------------------------  --------------------------------------------------------------------------------
   Sortie : NULL ou nom du segment    Sortie : Néant
 --------------------------------------------------------------------------------  --------------------------------------------------------------------------------
   Effet de bord : Néant    Effet de bord : Néant
 ================================================================================  ================================================================================
 */  */
   
 static unsigned char *  void
 nom_segment(unsigned char *chemin, pid_t pid)  creation_queue_signaux(struct_processus *s_etat_processus)
 {  {
     unsigned char               *fichier;      pthread_attr_t                  attributs;
   
 #   ifdef IPCS_SYSV // !POSIX      unsigned char                   *nom;
 #       ifndef OS2 // !OS2  
   
             if ((fichier = malloc((strlen(chemin) + 1 + 256 + 1) *      racine_segment = (*s_etat_processus).chemin_fichiers_temporaires;
                     sizeof(unsigned char))) == NULL)  
   #   ifndef IPCS_SYSV // POSIX
           if ((nom = nom_segment((*s_etat_processus).chemin_fichiers_temporaires,
                   getpid())) == NULL)
           {
               (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
               return;
           }
   
           if ((f_queue_signaux = shm_open(nom, O_RDWR | O_CREAT | O_EXCL,
                   S_IRUSR | S_IWUSR)) == -1)
           {
               if (errno != EEXIST)
             {              {
                 return(NULL);                  sys_free(nom);
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
             }              }
   
             sprintf(fichier, "%s/RPL-SIGQUEUES-%d", chemin, (int) pid);              if ((*s_etat_processus).langue == 'F')
 #       else // OS2  
             if ((fichier = malloc((10 + 256 + 1) * sizeof(unsigned char)))  
                     == NULL)  
             {              {
                 return(NULL);                  printf("+++Attention : Le segment de mémoire %s préexiste !\n",
                           nom);
               }
               else
               {
                   printf("+++Warning: %s memory segment preexists!\n", nom);
             }              }
   
             sprintf(fichier, "\\SHAREMEM\\RPL-SIGQUEUES-%d", (int) pid);              if ((f_queue_signaux = shm_open(nom, O_RDWR | O_CREAT | O_TRUNC,
 #       endif // OS2                      S_IRUSR | S_IWUSR)) == -1)
 #   else // POSIX              {
                   sys_free(nom);
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
           }
   
         if ((fichier = malloc((1 + 256 + 1) *          if (ftruncate(f_queue_signaux, sizeof(struct_queue_signaux)) == -1)
                 sizeof(unsigned char))) == NULL)  
         {          {
             return(NULL);              sys_free(nom);
               (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
               return;
         }          }
   
         sprintf(fichier, "/RPL-SIGQUEUES-%d", (int) pid);          s_queue_signaux = mmap(NULL, sizeof(struct_queue_signaux),
 #   endif                  PROT_READ | PROT_WRITE, MAP_SHARED, f_queue_signaux, 0);
   
     return(fichier);  
 }  
   
   
 /*  
 ================================================================================  
   Fonction créant un segment de mémoire partagée destiné à contenir  
   la queue des signaux.  
 ================================================================================  
   Entrée : structure de description du processus  
 --------------------------------------------------------------------------------  
   Sortie : Néant  
 --------------------------------------------------------------------------------  
   Effet de bord : Néant  
 ================================================================================  
 */  
   
 void          if (((void *) s_queue_signaux) == ((void *) -1))
 creation_queue_signaux(struct_processus *s_etat_processus)          {
 {              if (shm_unlink(nom) == -1)
     int                             segment;              {
                   sys_free(nom);
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
     pthread_mutexattr_t             attributs_mutex;              sys_free(nom);
               (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
               return;
           }
   
     unsigned char                   *nom;          sys_free(nom);
   
 #   ifndef IPCS_SYSV // POSIX          if ((semaphore_queue_signaux = sem_init2(1, getpid(), SEM_QUEUE))
                   == SEM_FAILED)
           {
               (*s_etat_processus).erreur_systeme = d_es_processus;
               return;
           }
   
     if ((nom = nom_segment((*s_etat_processus).chemin_fichiers_temporaires,          if ((semaphore_signalisation = sem_init2(0, getpid(),
             getpid())) == NULL)                  SEM_SIGNALISATION)) == SEM_FAILED)
     {          {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;              (*s_etat_processus).erreur_systeme = d_es_processus;
         return;              return;
     }          }
   
     if ((segment = shm_open(nom, O_RDWR | O_CREAT | O_EXCL,          if ((semaphore_arret_signalisation = sem_init2(1, getpid(),
             S_IRUSR | S_IWUSR)) == -1)                  SEM_ARRET_SIGNALISATION)) == SEM_FAILED)
     {          {
         free(nom);              (*s_etat_processus).erreur_systeme = d_es_processus;
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;              return;
         return;          }
     }  
   
     if (ftruncate(segment, sizeof(struct_queue_signaux)) == -1)          (*s_queue_signaux).pointeur_lecture = 0;
     {          (*s_queue_signaux).pointeur_ecriture = 0;
         free(nom);  
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;  
         return;  
     }  
   
     s_queue_signaux = mmap(NULL, sizeof(struct_queue_signaux),          (*s_queue_signaux).requete_arret = d_faux;
             PROT_READ | PROT_WRITE, MAP_SHARED, segment, 0);  
     close(segment);  
   
     if (((void *) s_queue_signaux) == ((void *) -1))          if (msync(s_queue_signaux, sizeof(struct_queue_signaux),
     {                  MS_ASYNC | MS_INVALIDATE) != 0)
         if (shm_unlink(nom) == -1)  
         {          {
             free(nom);              (*s_etat_processus).erreur_systeme = d_es_processus;
             (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;  
             return;              return;
         }          }
   #   else // IPCS_SYSV
   #       ifndef OS2
               int                             segment;
               int                             support;
   
         free(nom);              key_t                           clef;
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;  
         return;  
     }  
   
     free(nom);              // Création d'un segment de données associé au PID du processus
               // courant
   
     pthread_mutexattr_init(&attributs_mutex);              if ((nom = nom_segment((*s_etat_processus)
     pthread_mutexattr_settype(&attributs_mutex, PTHREAD_MUTEX_NORMAL);                      .chemin_fichiers_temporaires, getpid())) == NULL)
     pthread_mutex_init(&((*s_queue_signaux).mutex), &attributs_mutex);              {
     pthread_mutexattr_destroy(&attributs_mutex);                  (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
     (*s_queue_signaux).pointeur_lecture = 0;              if ((support = open(nom, O_RDWR | O_CREAT | O_EXCL,
     (*s_queue_signaux).pointeur_ecriture = 0;                      S_IRUSR | S_IWUSR)) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_erreur_fichier;
                   return;
               }
   
 #   else // SystemV              if ((clef = ftok(nom, 1)) == -1)
 #   ifndef OS2              {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               close(support);
               sys_free(nom);
   
               if ((segment = shmget(clef, sizeof(struct_queue_signaux),
                       IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR)) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
     file                            *desc;              s_queue_signaux = shmat(segment, NULL, 0);
               f_queue_signaux = segment;
   
     key_t                           clef;              if (((void *) s_queue_signaux) == ((void *) -1))
               {
                   if (shmctl(f_queue_signaux, IPC_RMID, 0) == -1)
                   {
                       (*s_etat_processus).erreur_systeme =
                               d_es_allocation_memoire;
                       return;
                   }
   
     // Création d'un segment de données associé au PID du processus courant                  (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
     chemin = (*s_etat_processus).chemin_fichiers_temporaires;              if ((semaphore_queue_signaux = sem_init2(1, getpid(), SEM_QUEUE))
                       == SEM_FAILED)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
   
     if ((nom = nom_segment((*s_etat_processus).chemin_fichiers_temporaires,              if ((semaphore_signalisation = sem_init2(0, getpid(),
             getpid())) == NULL)                      SEM_SIGNALISATION)) == SEM_FAILED)
     {              {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;                  (*s_etat_processus).erreur_systeme = d_es_processus;
         return;                  return;
     }              }
   
     if ((desc = fopen(nom, "w")) == NULL)              if ((semaphore_arret_signalisation = sem_init2(1, getpid(),
                       SEM_ARRET_SIGNALISATION)) == SEM_FAILED)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
   
               (*s_queue_signaux).pointeur_lecture = 0;
               (*s_queue_signaux).pointeur_ecriture = 0;
               (*s_queue_signaux).requete_arret = d_faux;
   #       else // OS/2
               if ((nom = nom_segment(NULL, getpid())) == NULL)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               if (DosAllocSharedMem((PVOID) &s_queue_signaux, nom,
                       sizeof(struct_queue_signaux),
                       PAG_WRITE | PAG_READ | PAG_COMMIT) != 0)
               {
                   sys_free(nom);
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               sys_free(nom);
   
               if (sem_init(&((*s_queue_signaux).semaphore), 1, 1) != 0)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               if (sem_init(&((*s_queue_signaux).signalisation), 1, 0) != 0)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               if (sem_init(&((*s_queue_signaux).arret_signalisation), 1, 1) != 0)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               (*s_queue_signaux).pointeur_lecture = 0;
               (*s_queue_signaux).pointeur_ecriture = 0;
               (*s_queue_signaux).requete_arret = d_faux;
   #       endif
   #   endif
   
       (*s_queue_signaux).controle = getpid();
   
       if (lancement_thread_signaux(s_etat_processus) == d_erreur)
     {      {
         (*s_etat_processus).erreur_systeme = d_es_erreur_fichier;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
   
     fclose(desc);      // Lancement du thread de récupération des signaux.
   
     if ((clef = ftok(nom, 1)) == -1)      if (pthread_attr_init(&attributs) != 0)
     {      {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
   
     free(nom);      if (pthread_attr_setdetachstate(&attributs,
               PTHREAD_CREATE_JOINABLE) != 0)
     if ((segment = shmget(clef,  
             nombre_queues * ((2 * longueur_queue) + 4) * sizeof(int),  
             IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR)) == -1)  
     {      {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
   
     fifos = shmat(segment, NULL, 0);      if (pthread_create(&((*s_queue_signaux).thread_signaux), &attributs,
               thread_surveillance_signaux, s_etat_processus) != 0)
     if (((void *) fifos) == ((void *) -1))  
     {      {
         if (shmctl(segment, IPC_RMID, 0) == -1)          (*s_etat_processus).erreur_systeme = d_es_processus;
         {  
             (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;  
             return;  
         }  
   
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;  
         return;          return;
     }      }
   
 #   else      if (pthread_attr_destroy(&attributs) != 0)
   
     if ((nom = nom_segment(NULL, getpid())) == NULL)  
     {      {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
   
     if (DosAllocSharedMem(&ptr_os2, nom, nombre_queues *  #   ifndef IPCS_SYSV
             ((2 * longueur_queue) + 4) * sizeof(int),      if (msync(s_queue_signaux, sizeof(s_queue_signaux),
             PAG_WRITE | PAG_READ | PAG_COMMIT) != 0)              MS_ASYNC | MS_INVALIDATE) != 0)
     {      {
         free(nom);          (*s_etat_processus).erreur_systeme = d_es_processus;
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;  
         return;          return;
     }      }
   
     free(nom);  
     fifos = ptr_os2;  
   
 #   endif  
 #   endif  #   endif
   
     return;      return;
Line 2583  liberation_queue_signaux(struct_processu Line 3647  liberation_queue_signaux(struct_processu
 {  {
 #   ifdef IPCS_SYSV // SystemV  #   ifdef IPCS_SYSV // SystemV
 #       ifndef OS2  #       ifndef OS2
               if (shmdt(s_queue_signaux) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
 #       else // OS/2  #       else // OS/2
 #       endif  #       endif
 #   else // POSIX  #   else // POSIX
           sem_close(semaphore_queue_signaux);
           sem_close(semaphore_signalisation);
           sem_close(semaphore_arret_signalisation);
   
         if (munmap(s_queue_signaux, sizeof(struct_queue_signaux)) != 0)          if (munmap(s_queue_signaux, sizeof(struct_queue_signaux)) != 0)
         {          {
             (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;              (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
             return;              return;
         }          }
   
           close(f_queue_signaux);
 #   endif  #   endif
   
     return;      return;
Line 2613  liberation_queue_signaux(struct_processu Line 3688  liberation_queue_signaux(struct_processu
 void  void
 destruction_queue_signaux(struct_processus *s_etat_processus)  destruction_queue_signaux(struct_processus *s_etat_processus)
 {  {
     unsigned char       *nom;  
   
 #   ifdef IPCS_SYSV // SystemV  
 #   ifndef OS2  #   ifndef OS2
           unsigned char       *nom;
   #   endif
   
     if (shmdt(fifos) == -1)      // On dépile les interruptions pour arrêter les SIGUSR2 sur
       // le processus courant.
   
       scrutation_interruptions(s_etat_processus);
   
       while(sem_wait(semaphore_arret_signalisation) != 0)
     {      {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          if (errno != EINTR)
         return;          {
               (*s_etat_processus).erreur_systeme = d_es_processus;
               return;
           }
     }      }
   
     if (shmctl(segment, IPC_RMID, 0) == -1)      (*s_queue_signaux).requete_arret = d_vrai;
   
   #   ifndef IPCS_SYSV
       msync(s_queue_signaux, sizeof(s_queue_signaux), MS_ASYNC | MS_INVALIDATE);
   #   endif
   
       sem_post(semaphore_arret_signalisation);
   
       // Incrémenter le sémaphore pour être sûr de le débloquer.
   
       sem_post(semaphore_signalisation);
   
       if ((*s_queue_signaux).controle == getpid())
     {      {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          pthread_join((*s_queue_signaux).thread_signaux, NULL);
         return;  
     }      }
       else
     if ((nom = nom_segment((*s_etat_processus).chemin_fichiers_temporaires,  
             getpid())) == NULL)  
     {      {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;          (*s_etat_processus).erreur_systeme = d_es_processus;
         return;          return;
     }      }
   
     unlink(nom);      arret_thread_signaux(s_etat_processus);
     free(nom);  
   
 #   else  #   ifdef IPCS_SYSV // SystemV
   #       ifndef OS2
               // Il faut commencer par éliminer le sémaphore.
   
     if (DosFreeMem(fifos) != 0)              if (semctl((*semaphore_queue_signaux).sem, 0, IPC_RMID) == -1)
     {              {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;                  (*s_etat_processus).erreur_systeme = d_es_processus;
         return;                  return;
     }              }
   
 #   endif              unlink((*semaphore_queue_signaux).path);
               sys_free((*semaphore_queue_signaux).path);
   
               if (semctl((*semaphore_signalisation).sem, 0, IPC_RMID) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
   
               unlink((*semaphore_signalisation).path);
               sys_free((*semaphore_signalisation).path);
   
               if (semctl((*semaphore_arret_signalisation).sem, 0, IPC_RMID) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
   
               unlink((*semaphore_arret_signalisation).path);
               sys_free((*semaphore_arret_signalisation).path);
   
               if (shmdt(s_queue_signaux) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               if (shmctl(f_queue_signaux, IPC_RMID, 0) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               if ((nom = nom_segment((*s_etat_processus)
                       .chemin_fichiers_temporaires, getpid())) == NULL)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   
               unlink(nom);
               sys_free(nom);
   #       else
               sem_close(&((*s_queue_signaux).semaphore));
               sem_destroy(&((*s_queue_signaux).semaphore));
   
               sem_close(&((*s_queue_signaux).signalisation));
               sem_destroy(&((*s_queue_signaux).signalisation));
   
               sem_close(&((*s_queue_signaux).arret_signalisation));
               sem_destroy(&((*s_queue_signaux).arret_signalisation));
   
               if (DosFreeMem(s_queue_signaux) != 0)
               {
                   (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
                   return;
               }
   #       endif
 #   else // POSIX  #   else // POSIX
           sem_destroy2(semaphore_queue_signaux, getpid(), SEM_QUEUE);
           sem_destroy2(semaphore_signalisation, getpid(), SEM_SIGNALISATION);
           sem_destroy2(semaphore_arret_signalisation, getpid(),
                   SEM_ARRET_SIGNALISATION);
   
     if (munmap(s_queue_signaux, sizeof(struct_queue_signaux)) != 0)          if (munmap(s_queue_signaux, sizeof(struct_queue_signaux)) != 0)
     {          {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;              (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
         return;              return;
     }          }
   
     if ((nom = nom_segment(NULL, getpid())) == NULL)          if ((nom = nom_segment(NULL, getpid())) == NULL)
     {          {
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;              (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
         return;              return;
     }          }
   
     if (shm_unlink(nom) != 0)          close(f_queue_signaux);
     {  
         free(nom);  
         (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;  
         return;  
     }  
   
     free(nom);          if (shm_unlink(nom) != 0)
           {
               sys_free(nom);
               (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
               return;
           }
   
           sys_free(nom);
 #   endif  #   endif
   
     return;      return;

Removed from v.1.68  
changed lines
  Added in v.1.204


CVSweb interface <joel.bertrand@systella.fr>