Diff for /rpl/src/interruptions.c between versions 1.88 and 1.125

version 1.88, 2011/11/30 12:15:18 version 1.125, 2013/05/21 12:10:12
Line 1 Line 1
 /*  /*
 ================================================================================  ================================================================================
   RPL/2 (R) version 4.1.5    RPL/2 (R) version 4.1.14
   Copyright (C) 1989-2011 Dr. BERTRAND Joël    Copyright (C) 1989-2013 Dr. BERTRAND Joël
   
   This file is part of RPL/2.    This file is part of RPL/2.
   
Line 52  typedef struct liste_chainee_volatile Line 52  typedef struct liste_chainee_volatile
     volatile void                           *donnee;      volatile void                           *donnee;
 } struct_liste_chainee_volatile;  } struct_liste_chainee_volatile;
   
   
 static volatile struct_liste_chainee_volatile   *liste_threads  static volatile struct_liste_chainee_volatile   *liste_threads
         = NULL;          = NULL;
 static volatile struct_liste_chainee_volatile   *liste_threads_surveillance  static volatile struct_liste_chainee_volatile   *liste_threads_surveillance
Line 64  unsigned char         *racine_segment; Line 63  unsigned char         *racine_segment;
 static pthread_mutex_t                          mutex_interruptions  static pthread_mutex_t                          mutex_interruptions
         = PTHREAD_MUTEX_INITIALIZER;          = PTHREAD_MUTEX_INITIALIZER;
   
   static void *
   thread_surveillance_signaux(void *argument)
   {
       // Cette fonction est lancée dans un thread créé par processus pour
       // gérer le cas des appels système qui seraient bloqués lors de l'arrivée du
       // signal SIGALRM. Les processus externes n'envoient plus un signal au
       // processus ou au thread à signaler mais positionnent les informations
       // nécessaires dans la queue des signaux et incrémentent le sémaphore.
       // Le sémaphore est décrémenté lorsque le signal est effectivement traité.
   
       int                                     nombre_signaux_envoyes;
   
       struct_processus                        *s_etat_processus;
   
       struct timespec                         attente;
   
       volatile struct_liste_chainee_volatile  *l_element_courant;
   
       sigset_t                                set;
   
       sigfillset(&set);
       pthread_sigmask(SIG_BLOCK, &set, NULL);
   
       s_etat_processus = (struct_processus *) argument;
   
       for(;;)
       {
           attente.tv_sec = 0;
           attente.tv_nsec = GRANULARITE_us * 1000;
   
   #       if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
           if (sem_wait(&(*s_queue_signaux).signalisation) == 0)
   #       else
           if (sem_wait(semaphore_signalisation) == 0)
   #       endif
           {
   #           if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
               sem_post(&(*s_queue_signaux).signalisation);
   #           else
               sem_post(semaphore_signalisation);
   #           endif
   
               if ((*s_queue_signaux).requete_arret == d_vrai)
               {
                   break;
               }
   
               nombre_signaux_envoyes = 0;
               sched_yield();
   
               // Dans un premier temps, on verrouille la queue des signaux
               // affectée au processus courant pour vérifier s'il y a quelque
               // chose à traiter.
   
   #           if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
               sem_wait(&(*s_queue_signaux).semaphore);
   #           else
               sem_wait(semaphore_queue_signaux);
   #           endif
   
               if ((*s_queue_signaux).pointeur_lecture !=
                       (*s_queue_signaux).pointeur_ecriture)
               {
                   // Attention : raise() envoit le signal au thread appelant !
                   // kill() l'envoie au processus appelant, donc dans notre
                   // cas à un thread aléatoire du processus, ce qui nous
                   // convient tout à fait puisqu'il s'agit de débloquer les
                   // appels système lents.
   
                   nombre_signaux_envoyes++;
                   kill(getpid(), SIGALRM);
               }
   
   #           if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
               sem_post(&(*s_queue_signaux).semaphore);
   #           else
               sem_post(semaphore_queue_signaux);
   #           endif
   
               // Dans un second temps, on balaye toutes les queues de signaux
               // des threads du processus courant.
   
               pthread_mutex_lock(&mutex_liste_threads);
               l_element_courant = liste_threads;
   
               while(l_element_courant != NULL)
               {
                   if ((*((struct_thread *) (*l_element_courant).donnee)).pid
                           == getpid())
                   {
                       if ((*(*((struct_thread *) (*l_element_courant).donnee))
                               .s_etat_processus).pointeur_signal_ecriture !=
                               (*(*((struct_thread *) (*l_element_courant).donnee))
                               .s_etat_processus).pointeur_signal_lecture)
                       {
                           nombre_signaux_envoyes++;
                           pthread_kill((*((struct_thread *) (*l_element_courant)
                                   .donnee)).tid, SIGALRM);
                       }
                   }
   
                   l_element_courant = (*l_element_courant).suivant;
               }
   
               pthread_mutex_unlock(&mutex_liste_threads);
   
               // Nanosleep
   
               if (nombre_signaux_envoyes > 0)
               {
                   nanosleep(&attente, NULL);
               }
           }
           else
           {
               if (errno != EINTR)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
               }
           }
       }
   
       pthread_exit(NULL);
   }
   
 void  void
 modification_pid_thread_pere(struct_processus *s_etat_processus)  modification_pid_thread_pere(struct_processus *s_etat_processus)
 {  {
Line 207  retrait_thread(struct_processus *s_etat_ Line 331  retrait_thread(struct_processus *s_etat_
         return;          return;
     }      }
   
       // Le thread ne peut plus traiter de signaux explicites. Il convient
       // alors de corriger le sémaphore pour annuler les signaux en attente.
   
       while((*(*((struct_thread *) (*l_element_courant).donnee)).s_etat_processus)
               .pointeur_signal_ecriture != (*(*((struct_thread *)
               (*l_element_courant).donnee)).s_etat_processus)
               .pointeur_signal_lecture)
       {
   #       if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
           while(sem_wait(&((*s_queue_signaux).signalisation)) != 0)
   #       else
           while(sem_wait(semaphore_signalisation) != 0)
   #       endif
           {
               if (errno != EINTR)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
           }
   
           (*(*((struct_thread *) (*l_element_courant).donnee)).s_etat_processus)
                   .pointeur_signal_lecture = ((*(*((struct_thread *)
                   (*l_element_courant).donnee)).s_etat_processus)
                   .pointeur_signal_lecture + 1) % LONGUEUR_QUEUE_SIGNAUX;
       }
   
     free((void *) (*l_element_courant).donnee);      free((void *) (*l_element_courant).donnee);
     free((struct_liste_chainee_volatile *) l_element_courant);      free((struct_liste_chainee_volatile *) l_element_courant);
   
Line 398  liberation_threads(struct_processus *s_e Line 549  liberation_threads(struct_processus *s_e
   
     struct_processus                            *candidat;      struct_processus                            *candidat;
   
     unsigned long                               i;      struct_liste_variables_partagees            *l_element_partage_courant;
       struct_liste_variables_partagees            *l_element_partage_suivant;
   
       struct_liste_variables_statiques            *l_element_statique_courant;
       struct_liste_variables_statiques            *l_element_statique_suivant;
   
       integer8                                    i;
   
     void                                        *element_candidat;      void                                        *element_candidat;
     void                                        *element_courant;      void                                        *element_courant;
Line 441  liberation_threads(struct_processus *s_e Line 598  liberation_threads(struct_processus *s_e
             close((*s_etat_processus).pipe_injections);              close((*s_etat_processus).pipe_injections);
             close((*s_etat_processus).pipe_nombre_injections);              close((*s_etat_processus).pipe_nombre_injections);
             close((*s_etat_processus).pipe_interruptions);              close((*s_etat_processus).pipe_interruptions);
             close((*s_etat_processus).pipe_nombre_objets_attente);              close((*s_etat_processus).pipe_nombre_elements_attente);
             close((*s_etat_processus).pipe_nombre_interruptions_attente);  
   
             liberation(s_etat_processus, (*s_etat_processus).at_exit);              liberation(s_etat_processus, (*s_etat_processus).at_exit);
   
Line 510  liberation_threads(struct_processus *s_e Line 666  liberation_threads(struct_processus *s_e
                     close((*s_argument_thread).pipe_acquittement[1]);                      close((*s_argument_thread).pipe_acquittement[1]);
                     close((*s_argument_thread).pipe_injections[1]);                      close((*s_argument_thread).pipe_injections[1]);
                     close((*s_argument_thread).pipe_nombre_injections[1]);                      close((*s_argument_thread).pipe_nombre_injections[1]);
                     close((*s_argument_thread).pipe_nombre_objets_attente[0]);                      close((*s_argument_thread).pipe_nombre_elements_attente[0]);
                     close((*s_argument_thread).pipe_interruptions[0]);                      close((*s_argument_thread).pipe_interruptions[0]);
                     close((*s_argument_thread)  
                             .pipe_nombre_interruptions_attente[0]);  
   
                     if (pthread_mutex_unlock(&((*s_argument_thread)                      if (pthread_mutex_unlock(&((*s_argument_thread)
                             .mutex_nombre_references)) != 0)                              .mutex_nombre_references)) != 0)
Line 613  liberation_threads(struct_processus *s_e Line 767  liberation_threads(struct_processus *s_e
                 }                  }
             }              }
   
             liberation_arbre_variables(s_etat_processus,              // ne peut être effacé qu'une seule fois
                     (*s_etat_processus).s_arbre_variables, d_faux);  
   
             for(i = 0; i < (*s_etat_processus).nombre_variables_statiques; i++)  
             {  
                 pthread_mutex_trylock(&((*(*s_etat_processus)  
                         .s_liste_variables_statiques[i].objet).mutex));  
                 pthread_mutex_unlock(&((*(*s_etat_processus)  
                         .s_liste_variables_statiques[i].objet).mutex));  
   
                 liberation(s_etat_processus, (*s_etat_processus)  
                         .s_liste_variables_statiques[i].objet);  
                 free((*s_etat_processus).s_liste_variables_statiques[i].nom);  
             }  
   
             free((*s_etat_processus).s_liste_variables_statiques);  
   
             // Ne peut être effacé qu'une seule fois  
             if (suppression_variables_partagees == d_faux)              if (suppression_variables_partagees == d_faux)
             {              {
                 suppression_variables_partagees = d_vrai;                  suppression_variables_partagees = d_vrai;
   
                 for(i = 0; i < (*(*s_etat_processus)                  liberation_arbre_variables_partagees(s_etat_processus,
                         .s_liste_variables_partagees).nombre_variables; i++)                          (*(*s_etat_processus).s_arbre_variables_partagees));
                 {  
                     pthread_mutex_trylock(&((*(*(*s_etat_processus)  
                             .s_liste_variables_partagees).table[i].objet)  
                             .mutex));  
                     pthread_mutex_unlock(&((*(*(*s_etat_processus)  
                             .s_liste_variables_partagees).table[i].objet)  
                             .mutex));  
   
                     liberation(s_etat_processus, (*(*s_etat_processus)                  l_element_partage_courant = (*(*s_etat_processus)
                             .s_liste_variables_partagees).table[i].objet);                          .l_liste_variables_partagees);
                     free((*(*s_etat_processus).s_liste_variables_partagees)  
                             .table[i].nom);  
                 }  
   
                 if ((*(*s_etat_processus).s_liste_variables_partagees).table                  while(l_element_partage_courant != NULL)
                         != NULL)  
                 {                  {
                     free((struct_variable_partagee *) (*(*s_etat_processus)                      l_element_partage_suivant =
                             .s_liste_variables_partagees).table);                              (*l_element_partage_courant).suivant;
                       free(l_element_partage_courant);
                       l_element_partage_courant = l_element_partage_suivant;
                 }                  }
               }
   
                 pthread_mutex_trylock(&((*(*s_etat_processus)              liberation_arbre_variables(s_etat_processus,
                         .s_liste_variables_partagees).mutex));                      (*s_etat_processus).s_arbre_variables, d_faux);
                 pthread_mutex_unlock(&((*(*s_etat_processus)  
                         .s_liste_variables_partagees).mutex));              l_element_statique_courant = (*s_etat_processus)
                       .l_liste_variables_statiques;
   
               while(l_element_statique_courant != NULL)
               {
                   l_element_statique_suivant =
                       (*l_element_statique_courant).suivant;
                   free(l_element_statique_courant);
                   l_element_statique_courant = l_element_statique_suivant;
             }              }
   
             element_courant = (*s_etat_processus).l_base_pile;              element_courant = (*s_etat_processus).l_base_pile;
Line 1171  liberation_threads(struct_processus *s_e Line 1308  liberation_threads(struct_processus *s_e
             close((*s_argument_thread).pipe_acquittement[1]);              close((*s_argument_thread).pipe_acquittement[1]);
             close((*s_argument_thread).pipe_injections[1]);              close((*s_argument_thread).pipe_injections[1]);
             close((*s_argument_thread).pipe_nombre_injections[1]);              close((*s_argument_thread).pipe_nombre_injections[1]);
             close((*s_argument_thread).pipe_nombre_objets_attente[0]);              close((*s_argument_thread).pipe_nombre_elements_attente[0]);
             close((*s_argument_thread).pipe_interruptions[0]);              close((*s_argument_thread).pipe_interruptions[0]);
             close((*s_argument_thread).pipe_nombre_interruptions_attente[0]);  
   
             if (pthread_mutex_unlock(&((*s_argument_thread)              if (pthread_mutex_unlock(&((*s_argument_thread)
                     .mutex_nombre_references)) != 0)                      .mutex_nombre_references)) != 0)
Line 1488  deverrouillage_gestionnaire_signaux(stru Line 1624  deverrouillage_gestionnaire_signaux(stru
     return;      return;
 }  }
   
   /*
   ================================================================================
     Fonctions de gestion des signaux dans les threads.
   
     Lorsqu'un processus reçoit un signal, il appelle le gestionnaire de signal
     associé qui ne fait qu'envoyer au travers de write() le signal
     reçus dans un pipe. Un second thread est bloqué sur ce pipe et
     effectue le traitement adéquat pour le signal donné.
   ================================================================================
   */
   
 #define test_signal(signal) \  #define test_signal(signal) \
     if (signal_test == SIGTEST) { signal_test = signal; return; }      if (signal_test == SIGTEST) { signal_test = signal; return; }
   
   static int          pipe_signaux;
   
   logical1
   lancement_thread_signaux(struct_processus *s_etat_processus)
   {
       pthread_attr_t                  attributs;
   
       void                            *argument;
   
       if (pipe((*s_etat_processus).pipe_signaux) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return(d_erreur);
       }
   
       pipe_signaux = (*s_etat_processus).pipe_signaux[1];
   
       if (pthread_attr_init(&attributs) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return(d_erreur);
       }
   
       if (pthread_attr_setdetachstate(&attributs, PTHREAD_CREATE_JOINABLE) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return(d_erreur);
       }
   
       argument = (*s_etat_processus).pipe_signaux;
   
       if (pthread_create(&((*s_etat_processus).thread_signaux), &attributs,
               thread_signaux, argument) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return(d_erreur);
       }
   
       return(d_absence_erreur);
   }
   
   logical1
   arret_thread_signaux(struct_processus *s_etat_processus)
   {
       unsigned char       signal;
       ssize_t             n;
   
       signal = (unsigned char ) (rpl_sigmax & 0xFF);
   
       do
       {
           n = write((*s_etat_processus).pipe_signaux[1], &signal, sizeof(signal));
   
           if (n < 0)
           {
               return(d_erreur);
           }
       } while(n != 1);
   
       pthread_join((*s_etat_processus).thread_signaux, NULL);
   
       close((*s_etat_processus).pipe_signaux[0]);
       close((*s_etat_processus).pipe_signaux[1]);
   
       return(d_absence_erreur);
   }
   
   void *
   thread_signaux(void *argument)
   {
       int                     *pipe;
   
       sigset_t                masque;
   
       struct pollfd           fds;
   
       unsigned char           signal;
   
       pipe = (int *) argument;
       fds.fd = pipe[0];
       fds.events = POLLIN;
       fds.revents = 0;
   
       sigfillset(&masque);
       pthread_sigmask(SIG_BLOCK, &masque, NULL);
   
       do
       {
           if (poll(&fds, 1, -1) == -1)
           {
               pthread_exit(NULL);
           }
   
           read(fds.fd, &signal, 1);
   
           if (signal != (0xFF & rpl_sigmax))
           {
               envoi_signal_processus(getpid(), signal);
               // Un signal SIGALRM est envoyé par le thread de surveillance
               // des signaux jusqu'à ce que les signaux soient tous traités.
           }
       } while(signal != (0xFF & rpl_sigmax));
   
       pthread_exit(NULL);
   }
   
 // Récupération des signaux  // Récupération des signaux
 // - SIGINT (arrêt au clavier)  // - SIGINT  (arrêt au clavier)
 // - SIGTERM (signal d'arrêt en provenance du système)  // - SIGTERM (signal d'arrêt en provenance du système)
   
 void  void
 interruption1(int signal)  interruption1(int signal)
 {  {
       unsigned char       signal_tronque;
   
     test_signal(signal);      test_signal(signal);
   
     switch(signal)      switch(signal)
     {      {
         case SIGINT:          case SIGINT:
             envoi_signal_processus(getpid(), rpl_sigint);              signal_tronque = (unsigned char) (rpl_sigint & 0xFF);
               write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
             break;              break;
   
         case SIGTERM:          case SIGTERM:
             envoi_signal_processus(getpid(), rpl_sigterm);              signal_tronque = (unsigned char) (rpl_sigterm & 0xFF);
               write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
             break;              break;
   
         case SIGUSR1:          case SIGUSR1:
             envoi_signal_processus(getpid(), rpl_sigalrm);              signal_tronque = (unsigned char) (rpl_sigalrm & 0xFF);
               write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
             break;              break;
   
           default:
               // SIGALRM
               break;
       }
   
       return;
   }
   
   // Récupération des signaux
   // - SIGFSTP
   //
   // ATTENTION :
   // Le signal SIGFSTP provient de la mort du processus de contrôle.
   // Sous certains systèmes (Linux...), la mort du terminal de contrôle
   // se traduit par l'envoi d'un SIGHUP au processus. Sur d'autres
   // (SunOS), le processus reçoit un SIGFSTP avec une structure siginfo
   // non initialisée (pointeur NULL) issue de TERMIO.
   
   void
   interruption2(int signal)
   {
       unsigned char       signal_tronque;
   
       test_signal(signal);
   
       signal_tronque = (unsigned char) (rpl_sigtstp & 0xFF);
       write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
       return;
   }
   
   void
   interruption3(int signal)
   {
       // Si on passe par ici, c'est qu'il est impossible de récupérer
       // l'erreur d'accès à la mémoire. On sort donc du programme quitte à
       // ce qu'il reste des processus orphelins.
   
       unsigned char       message_1[] = "+++System : Uncaught access violation\n"
                                   "+++System : Aborting !\n";
       unsigned char       message_2[] = "+++System : Stack overflow\n"
                                   "+++System : Aborting !\n";
   
       test_signal(signal);
   
       if (pid_processus_pere == getpid())
       {
           kill(pid_processus_pere, SIGUSR1);
       }
   
       if (signal != SIGUSR2)
       {
           write(STDERR_FILENO, message_1, strlen(message_1));
       }
       else
       {
           write(STDERR_FILENO, message_2, strlen(message_2));
     }      }
   
       _exit(EXIT_FAILURE);
   }
   
   // Récupération des signaux
   // - SIGHUP
   
   void
   interruption4(int signal)
   {
       unsigned char       signal_tronque;
   
       test_signal(signal);
   
       signal_tronque = (unsigned char) (rpl_sighup & 0xFF);
       write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
       return;
   }
   
   // Récupération des signaux
   // - SIGPIPE
   
   void
   interruption5(int signal)
   {
       unsigned char       message[] = "+++System : SIGPIPE\n"
                                   "+++System : Aborting !\n";
       unsigned char       signal_tronque;
   
       test_signal(signal);
   
       if (pid_processus_pere == getpid())
       {
           signal_tronque = (unsigned char) (rpl_sigalrm & 0xFF);
           write(pipe_signaux, &signal_tronque, sizeof(signal_tronque));
       }
   
       write(STDERR_FILENO, message, strlen(message));
     return;      return;
 }  }
   
Line 1571  inline static void Line 1923  inline static void
 signal_term(struct_processus *s_etat_processus, pid_t pid)  signal_term(struct_processus *s_etat_processus, pid_t pid)
 {  {
     struct_processus        *s_thread_principal;      struct_processus        *s_thread_principal;
     volatile sig_atomic_t   exclusion = 0;      pthread_mutex_t         exclusion = PTHREAD_MUTEX_INITIALIZER;
   
     verrouillage_gestionnaire_signaux(s_etat_processus);      verrouillage_gestionnaire_signaux(s_etat_processus);
   
Line 1593  signal_term(struct_processus *s_etat_pro Line 1945  signal_term(struct_processus *s_etat_pro
         {          {
             (*s_etat_processus).var_volatile_traitement_sigint = -1;              (*s_etat_processus).var_volatile_traitement_sigint = -1;
   
             while(exclusion == 1);              pthread_mutex_lock(&exclusion);
             exclusion = 1;  
   
             if ((*s_etat_processus).var_volatile_requete_arret == -1)              if ((*s_etat_processus).var_volatile_requete_arret == -1)
             {              {
                 deverrouillage_gestionnaire_signaux(s_etat_processus);                  deverrouillage_gestionnaire_signaux(s_etat_processus);
                 exclusion = 0;                  pthread_mutex_unlock(&exclusion);
                 return;                  return;
             }              }
   
             (*s_etat_processus).var_volatile_requete_arret = -1;              (*s_etat_processus).var_volatile_requete_arret = -1;
             (*s_etat_processus).var_volatile_alarme = -1;              (*s_etat_processus).var_volatile_alarme = -1;
   
             exclusion = 0;              pthread_mutex_unlock(&exclusion);
         }          }
     }      }
     else      else
Line 1688  signal_int(struct_processus *s_etat_proc Line 2039  signal_int(struct_processus *s_etat_proc
     return;      return;
 }  }
   
 // Récupération des signaux  
 // - SIGFSTP  
 //  
 // ATTENTION :  
 // Le signal SIGFSTP provient de la mort du processus de contrôle.  
 // Sous certains systèmes (Linux...), la mort du terminal de contrôle  
 // se traduit par l'envoi d'un SIGHUP au processus. Sur d'autres  
 // (SunOS), le processus reçoit un SIGFSTP avec une structure siginfo  
 // non initialisée (pointeur NULL) issue de TERMIO.  
   
 void  
 interruption2(int signal)  
 {  
     test_signal(signal);  
     envoi_signal_processus(getpid(), rpl_sigtstp);  
     return;  
 }  
   
 static inline void  static inline void
 signal_tstp(struct_processus *s_etat_processus, pid_t pid)  signal_tstp(struct_processus *s_etat_processus, pid_t pid)
 {  {
Line 1753  signal_tstp(struct_processus *s_etat_pro Line 2086  signal_tstp(struct_processus *s_etat_pro
     return;      return;
 }  }
   
 void  
 interruption3(int signal)  
 {  
     // Si on passe par ici, c'est qu'il est impossible de récupérer  
     // l'erreur d'accès à la mémoire. On sort donc du programme quitte à  
     // ce qu'il reste des processus orphelins.  
   
     unsigned char       message_1[] = "+++System : Uncaught access violation\n"  
                                 "+++System : Aborting !\n";  
     unsigned char       message_2[] = "+++System : Stack overflow\n"  
                                 "+++System : Aborting !\n";  
   
     test_signal(signal);  
   
     if (pid_processus_pere == getpid())  
     {  
         kill(pid_processus_pere, SIGUSR1);  
     }  
   
     if (signal != SIGUSR2)  
     {  
         write(STDERR_FILENO, message_1, strlen(message_1));  
     }  
     else  
     {  
         write(STDERR_FILENO, message_2, strlen(message_2));  
     }  
   
     _exit(EXIT_FAILURE);  
 }  
   
   
 static void  static void
 sortie_interruption_depassement_pile(void *arg1, void *arg2, void *arg3)  sortie_interruption_depassement_pile(void *arg1, void *arg2, void *arg3)
 {  {
Line 1802  sortie_interruption_depassement_pile(voi Line 2103  sortie_interruption_depassement_pile(voi
     return;      return;
 }  }
   
   
 void  void
 interruption_depassement_pile(int urgence, stackoverflow_context_t scp)  interruption_depassement_pile(int urgence, stackoverflow_context_t scp)
 {  {
Line 1820  interruption_depassement_pile(int urgenc Line 2120  interruption_depassement_pile(int urgenc
     return;      return;
 }  }
   
   
 int  int
 interruption_violation_access(void *adresse_fautive, int gravite)  interruption_violation_access(void *adresse_fautive, int gravite)
 {  {
Line 1996  signal_inject(struct_processus *s_etat_p Line 2295  signal_inject(struct_processus *s_etat_p
     return;      return;
 }  }
   
 // Récupération des signaux  
 // - SIGPIPE  
   
 void  
 interruption5(int signal)  
 {  
     unsigned char       message[] = "+++System : SIGPIPE\n"  
                                 "+++System : Aborting !\n";  
   
     test_signal(signal);  
   
     if (pid_processus_pere == getpid())  
     {  
         envoi_signal_processus(pid_processus_pere, rpl_sigalrm);  
     }  
   
     write(STDERR_FILENO, message, strlen(message));  
     return;  
 }  
   
 static inline void  static inline void
 signal_urg(struct_processus *s_etat_processus, pid_t pid)  signal_urg(struct_processus *s_etat_processus, pid_t pid)
Line 2109  signal_abort(struct_processus *s_etat_pr Line 2389  signal_abort(struct_processus *s_etat_pr
     return;      return;
 }  }
   
 // Récupération des signaux  
 // - SIGHUP  
   
 void  
 interruption4(int signal)  
 {  
     test_signal(signal);  
     envoi_signal_processus(getpid(), rpl_sighup);  
     return;  
 }  
   
 static inline void  static inline void
 signal_hup(struct_processus *s_etat_processus, pid_t pid)  signal_hup(struct_processus *s_etat_processus, pid_t pid)
Line 2135  signal_hup(struct_processus *s_etat_proc Line 2405  signal_hup(struct_processus *s_etat_proc
         return;          return;
     }      }
   
     snprintf(nom, 8 + 64 + 1, "rpl-out-%lu-%lu", (unsigned long) getpid(),      snprintf(nom, 8 + 64 + 1, "rpl-out-%llu-%llu",
             (unsigned long) pthread_self());              (unsigned long long) getpid(),
               (unsigned long long) pthread_self());
   
     if ((fichier = fopen(nom, "w+")) != NULL)      if ((fichier = fopen(nom, "w+")) != NULL)
     {      {
Line 2245  envoi_interruptions(struct_processus *s_ Line 2516  envoi_interruptions(struct_processus *s_
         default:          default:
             if ((*s_etat_processus).langue == 'F')              if ((*s_etat_processus).langue == 'F')
             {              {
                 printf("+++System : Spurious signal (%d) !\n", signal);                  printf("+++System : Signal inconnu (%d) !\n", signal);
             }              }
             else              else
             {              {
                 printf("+++System : Signal inconnu (%d) !\n", signal);                  printf("+++System : Spurious signal (%d) !\n", signal);
             }              }
   
             break;              break;
Line 2268  scrutation_interruptions(struct_processu Line 2539  scrutation_interruptions(struct_processu
     // à lire. Les pointeurs d'écriture pointent sur les prochains éléments à      // à lire. Les pointeurs d'écriture pointent sur les prochains éléments à
     // écrire.      // écrire.
   
 #   ifndef SEMAPHORES_NOMMES  #   if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
         if (sem_trywait(&((*s_queue_signaux).semaphore)) == 0)          if (sem_trywait(&((*s_queue_signaux).semaphore)) == 0)
 #   else  #   else
         if (sem_trywait(semaphore_queue_signaux) == 0)          if (sem_trywait(semaphore_queue_signaux) == 0)
 #   endif  #   endif
     {      {
         if ((*s_queue_signaux).pointeur_lecture !=          while((*s_queue_signaux).pointeur_lecture !=
                 (*s_queue_signaux).pointeur_ecriture)                  (*s_queue_signaux).pointeur_ecriture)
         {          {
             // Il y a un signal en attente dans le segment partagé. On le              // Il y a un signal en attente dans le segment partagé. On le
Line 2287  scrutation_interruptions(struct_processu Line 2558  scrutation_interruptions(struct_processu
             (*s_queue_signaux).pointeur_lecture =              (*s_queue_signaux).pointeur_lecture =
                     ((*s_queue_signaux).pointeur_lecture + 1)                      ((*s_queue_signaux).pointeur_lecture + 1)
                     % LONGUEUR_QUEUE_SIGNAUX;                      % LONGUEUR_QUEUE_SIGNAUX;
   
   #           if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
               while(sem_wait(&((*s_queue_signaux).signalisation)) != 0)
   #           else
               while(sem_wait(semaphore_signalisation) != 0)
   #           endif
               {
                   if (errno != EINTR)
                   {
                       (*s_etat_processus).erreur_systeme = d_es_processus;
                       return;
                   }
               }
         }          }
   
 #       ifndef SEMAPHORES_NOMMES  #       if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
             sem_post(&((*s_queue_signaux).semaphore));              sem_post(&((*s_queue_signaux).semaphore));
 #       else  #       else
             sem_post(semaphore_queue_signaux);              sem_post(semaphore_queue_signaux);
Line 2300  scrutation_interruptions(struct_processu Line 2584  scrutation_interruptions(struct_processu
   
     if (pthread_mutex_trylock(&mutex_interruptions) == 0)      if (pthread_mutex_trylock(&mutex_interruptions) == 0)
     {      {
         if ((*s_etat_processus).pointeur_signal_lecture !=          while((*s_etat_processus).pointeur_signal_lecture !=
                 (*s_etat_processus).pointeur_signal_ecriture)                  (*s_etat_processus).pointeur_signal_ecriture)
         {          {
             // Il y a un signal dans la queue du thread courant. On le traite.              // Il y a un signal dans la queue du thread courant. On le traite.
Line 2312  scrutation_interruptions(struct_processu Line 2596  scrutation_interruptions(struct_processu
             (*s_etat_processus).pointeur_signal_lecture =              (*s_etat_processus).pointeur_signal_lecture =
                     ((*s_etat_processus).pointeur_signal_lecture + 1)                      ((*s_etat_processus).pointeur_signal_lecture + 1)
                     % LONGUEUR_QUEUE_SIGNAUX;                      % LONGUEUR_QUEUE_SIGNAUX;
   
   #           if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
               while(sem_wait(&((*s_queue_signaux).signalisation)) != 0)
   #           else
               while(sem_wait(semaphore_signalisation) != 0)
   #           endif
               {
                   if (errno != EINTR)
                   {
                       (*s_etat_processus).erreur_systeme = d_es_processus;
                       return;
                   }
               }
         }          }
   
         pthread_mutex_unlock(&mutex_interruptions);          pthread_mutex_unlock(&mutex_interruptions);
Line 2394  envoi_signal_processus(pid_t pid, enum s Line 2691  envoi_signal_processus(pid_t pid, enum s
 #   ifndef IPCS_SYSV  #   ifndef IPCS_SYSV
 #       ifdef SEMAPHORES_NOMMES  #       ifdef SEMAPHORES_NOMMES
             sem_t                   *semaphore;              sem_t                   *semaphore;
               sem_t                   *signalisation;
 #       endif  #       endif
 #   else  #   else
 #       ifndef OS2  #       ifndef OS2
Line 2418  envoi_signal_processus(pid_t pid, enum s Line 2716  envoi_signal_processus(pid_t pid, enum s
             return(1);              return(1);
         }          }
   
 #       ifndef SEMAPHORES_NOMMES  #       if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
             while(sem_wait(&((*s_queue_signaux).semaphore)) != 0)              while(sem_wait(&((*s_queue_signaux).semaphore)) != 0)
 #       else  #       else
             while(sem_wait(semaphore_queue_signaux) != 0)              while(sem_wait(semaphore_queue_signaux) != 0)
Line 2439  envoi_signal_processus(pid_t pid, enum s Line 2737  envoi_signal_processus(pid_t pid, enum s
                 ((*s_queue_signaux).pointeur_ecriture + 1)                  ((*s_queue_signaux).pointeur_ecriture + 1)
                 % LONGUEUR_QUEUE_SIGNAUX;                  % LONGUEUR_QUEUE_SIGNAUX;
   
 #       ifndef SEMAPHORES_NOMMES  #       if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
             if (sem_post(&((*s_queue_signaux).semaphore)) != 0)              if (sem_post(&((*s_queue_signaux).semaphore)) != 0)
 #       else  #       else
             if (sem_post(semaphore_queue_signaux) != 0)              if (sem_post(semaphore_queue_signaux) != 0)
Line 2447  envoi_signal_processus(pid_t pid, enum s Line 2745  envoi_signal_processus(pid_t pid, enum s
         {          {
             return(1);              return(1);
         }          }
   
   #       if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
               if (sem_post(&((*s_queue_signaux).signalisation)) != 0)
   #       else
               if (sem_post(semaphore_signalisation) != 0)
   #       endif
           {
               return(1);
           }
     }      }
     else      else
     {      {
Line 2533  envoi_signal_processus(pid_t pid, enum s Line 2840  envoi_signal_processus(pid_t pid, enum s
                     return(1);                      return(1);
                 }                  }
   
                   if ((signalisation = sem_open2(pid, SEM_SIGNALISATION))
                           == SEM_FAILED)
                   {
                       return(1);
                   }
   
                 while(sem_wait(semaphore) != 0)                  while(sem_wait(semaphore) != 0)
                 {                  {
                     if (errno != EINTR)                      if (errno != EINTR)
                     {                      {
                         sem_close(semaphore);                          sem_close(semaphore);
                           sem_close(signalisation);
                         return(1);                          return(1);
                     }                      }
                 }                  }
Line 2564  envoi_signal_processus(pid_t pid, enum s Line 2878  envoi_signal_processus(pid_t pid, enum s
                 {                  {
                     return(1);                      return(1);
                 }                  }
   
                   if (sem_post(&((*queue).signalisation)) != 0)
                   {
                       return(1);
                   }
 #           else  #           else
                 if (sem_post(semaphore) != 0)                  if (sem_post(semaphore) != 0)
                 {                  {
                     sem_close(semaphore);                      sem_close(semaphore);
                       sem_close(signalisation);
                     return(1);                      return(1);
                 }                  }
   
Line 2575  envoi_signal_processus(pid_t pid, enum s Line 2895  envoi_signal_processus(pid_t pid, enum s
                 {                  {
                     return(1);                      return(1);
                 }                  }
   
                   if (sem_post(signalisation) != 0)
                   {
                       sem_close(signalisation);
                       return(1);
                   }
   
                   if (sem_close(signalisation) != 0)
                   {
                       return(1);
                   }
   
 #           endif  #           endif
   
             if (munmap(queue, sizeof(struct_queue_signaux)) != 0)              if (munmap(queue, sizeof(struct_queue_signaux)) != 0)
Line 2588  envoi_signal_processus(pid_t pid, enum s Line 2920  envoi_signal_processus(pid_t pid, enum s
                 return(1);                  return(1);
             }              }
   
               if (sem_post(&((*queue).signalisation)) != 0)
               {
                   return(1);
               }
   
 #           ifndef OS2 // SysV  #           ifndef OS2 // SysV
                 if (shmdt(queue) != 0)                  if (shmdt(queue) != 0)
                 {                  {
Line 2611  envoi_signal_thread(pthread_t tid, enum Line 2948  envoi_signal_thread(pthread_t tid, enum
   
     struct_processus                        *s_etat_processus;      struct_processus                        *s_etat_processus;
   
       if (pthread_mutex_lock(&mutex_interruptions) != 0)
       {
           pthread_mutex_unlock(&mutex_liste_threads);
           return(1);
       }
   
     if (pthread_mutex_lock(&mutex_liste_threads) != 0)      if (pthread_mutex_lock(&mutex_liste_threads) != 0)
     {      {
         return(1);          return(1);
Line 2636  envoi_signal_thread(pthread_t tid, enum Line 2979  envoi_signal_thread(pthread_t tid, enum
         return(1);          return(1);
     }      }
   
     if (pthread_mutex_lock(&mutex_interruptions) != 0)  
     {  
         pthread_mutex_unlock(&mutex_liste_threads);  
         return(1);  
     }  
   
     s_etat_processus = (*((struct_thread *) (*l_element_courant).donnee))      s_etat_processus = (*((struct_thread *) (*l_element_courant).donnee))
             .s_etat_processus;              .s_etat_processus;
   
Line 2662  envoi_signal_thread(pthread_t tid, enum Line 2999  envoi_signal_thread(pthread_t tid, enum
         return(1);          return(1);
     }      }
   
   #   if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
       if (sem_post(&((*s_queue_signaux).signalisation)) != 0)
       {
           return(1);
       }
   #   else
       if (sem_post(semaphore_signalisation) != 0)
       {
           return(1);
       }
   #   endif
   
     return(0);      return(0);
 }  }
   
Line 2678  envoi_signal_contexte(struct_processus * Line 3027  envoi_signal_contexte(struct_processus *
             % LONGUEUR_QUEUE_SIGNAUX;              % LONGUEUR_QUEUE_SIGNAUX;
     pthread_mutex_unlock(&mutex_interruptions);      pthread_mutex_unlock(&mutex_interruptions);
   
   #   if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
       if (sem_post(&((*s_queue_signaux).signalisation)) != 0)
       {
           return(1);
       }
   #   else
       if (sem_post(semaphore_signalisation) != 0)
       {
           return(1);
       }
   #   endif
   
     return(0);      return(0);
 }  }
   
Line 2698  envoi_signal_contexte(struct_processus * Line 3059  envoi_signal_contexte(struct_processus *
 void  void
 creation_queue_signaux(struct_processus *s_etat_processus)  creation_queue_signaux(struct_processus *s_etat_processus)
 {  {
       pthread_attr_t                  attributs;
   
     unsigned char                   *nom;      unsigned char                   *nom;
   
     racine_segment = (*s_etat_processus).chemin_fichiers_temporaires;      racine_segment = (*s_etat_processus).chemin_fichiers_temporaires;
Line 2746  creation_queue_signaux(struct_processus Line 3109  creation_queue_signaux(struct_processus
   
 #       ifndef SEMAPHORES_NOMMES  #       ifndef SEMAPHORES_NOMMES
             sem_init(&((*s_queue_signaux).semaphore), 1, 1);              sem_init(&((*s_queue_signaux).semaphore), 1, 1);
               sem_init(&((*s_queue_signaux).signalisation), 1, 0);
 #       else  #       else
             if ((semaphore_queue_signaux = sem_init2(1, getpid(), SEM_QUEUE))              if ((semaphore_queue_signaux = sem_init2(1, getpid(), SEM_QUEUE))
                     == SEM_FAILED)                      == SEM_FAILED)
Line 2753  creation_queue_signaux(struct_processus Line 3117  creation_queue_signaux(struct_processus
                 (*s_etat_processus).erreur_systeme = d_es_processus;                  (*s_etat_processus).erreur_systeme = d_es_processus;
                 return;                  return;
             }              }
   
               if ((semaphore_signalisation = sem_init2(1, getpid(),
                       SEM_SIGNALISATION)) == SEM_FAILED)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
 #       endif  #       endif
   
         (*s_queue_signaux).pointeur_lecture = 0;          (*s_queue_signaux).pointeur_lecture = 0;
         (*s_queue_signaux).pointeur_ecriture = 0;          (*s_queue_signaux).pointeur_ecriture = 0;
           (*s_queue_signaux).requete_arret = d_faux;
   
         if (msync(s_queue_signaux, sizeof(struct_queue_signaux), 0))          if (msync(s_queue_signaux, sizeof(struct_queue_signaux), 0))
         {          {
Line 2820  creation_queue_signaux(struct_processus Line 3192  creation_queue_signaux(struct_processus
             }              }
   
             sem_init(&((*s_queue_signaux).semaphore), 1, 1);              sem_init(&((*s_queue_signaux).semaphore), 1, 1);
               sem_init(&((*s_queue_signaux).signalisation), 1, 0);
             (*s_queue_signaux).pointeur_lecture = 0;              (*s_queue_signaux).pointeur_lecture = 0;
             (*s_queue_signaux).pointeur_ecriture = 0;              (*s_queue_signaux).pointeur_ecriture = 0;
               (*s_queue_signaux).requete_arret = d_faux;
 #       else // OS/2  #       else // OS/2
             if ((nom = nom_segment(NULL, getpid())) == NULL)              if ((nom = nom_segment(NULL, getpid())) == NULL)
             {              {
Line 2841  creation_queue_signaux(struct_processus Line 3215  creation_queue_signaux(struct_processus
             free(nom);              free(nom);
   
             sem_init(&((*s_queue_signaux).semaphore), 1, 1);              sem_init(&((*s_queue_signaux).semaphore), 1, 1);
               sem_init(&((*s_queue_signaux).signalisation), 1, 0);
             (*s_queue_signaux).pointeur_lecture = 0;              (*s_queue_signaux).pointeur_lecture = 0;
             (*s_queue_signaux).pointeur_ecriture = 0;              (*s_queue_signaux).pointeur_ecriture = 0;
               (*s_queue_signaux).requete_arret = d_faux;
 #       endif  #       endif
 #   endif  #   endif
   
       // Lancement du thread de récupération des signaux.
   
       if (pthread_attr_init(&attributs) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
       }
   
       if (pthread_attr_setdetachstate(&attributs,
               PTHREAD_CREATE_JOINABLE) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
       }
   
   #   ifdef SCHED_OTHER
       if (pthread_attr_setschedpolicy(&attributs, SCHED_OTHER) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
       }
   #   endif
   
   #   ifdef PTHREAD_EXPLICIT_SCHED
       if (pthread_attr_setinheritsched(&attributs, PTHREAD_EXPLICIT_SCHED) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
       }
   #   endif
   
   #   ifdef PTHREAD_SCOPE_SYSTEM
       if (pthread_attr_setscope(&attributs, PTHREAD_SCOPE_SYSTEM) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
       }
   #   endif
   
       if (pthread_attr_destroy(&attributs) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
       }
   
       if (pthread_create(&((*s_queue_signaux).thread_signaux), &attributs,
               thread_surveillance_signaux, s_etat_processus) != 0)
       {
           (*s_etat_processus).erreur_systeme = d_es_processus;
           return;
       }
   
     return;      return;
 }  }
   
Line 2866  creation_queue_signaux(struct_processus Line 3294  creation_queue_signaux(struct_processus
 void  void
 liberation_queue_signaux(struct_processus *s_etat_processus)  liberation_queue_signaux(struct_processus *s_etat_processus)
 {  {
       // Incrémenter le sémaphore pour être sûr de le débloquer.
   
       (*s_queue_signaux).requete_arret = d_vrai;
   
   #   if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
       sem_post(&((*s_queue_signaux).signalisation));
   #   else
       sem_post(semaphore_signalisation);
   #   endif
   
       pthread_join((*s_queue_signaux).thread_signaux, NULL);
   
 #   ifdef IPCS_SYSV // SystemV  #   ifdef IPCS_SYSV // SystemV
 #       ifndef OS2  #       ifndef OS2
             if (shmdt(s_queue_signaux) == -1)              if (shmdt(s_queue_signaux) == -1)
Line 2878  liberation_queue_signaux(struct_processu Line 3318  liberation_queue_signaux(struct_processu
 #   else // POSIX  #   else // POSIX
 #       ifndef SEMAPHORES_NOMMES  #       ifndef SEMAPHORES_NOMMES
             sem_close(&((*s_queue_signaux).semaphore));              sem_close(&((*s_queue_signaux).semaphore));
               sem_close(&((*s_queue_signaux).signalisation));
 #       else  #       else
             sem_close(semaphore_queue_signaux);              sem_close(semaphore_queue_signaux);
               sem_close(semaphore_signalisation);
 #       endif  #       endif
   
         if (munmap(s_queue_signaux, sizeof(struct_queue_signaux)) != 0)          if (munmap(s_queue_signaux, sizeof(struct_queue_signaux)) != 0)
Line 2915  destruction_queue_signaux(struct_process Line 3357  destruction_queue_signaux(struct_process
         unsigned char       *nom;          unsigned char       *nom;
 #   endif  #   endif
   
       // Incrémenter le sémaphore pour être sûr de le débloquer.
   
       (*s_queue_signaux).requete_arret = d_vrai;
   
   #   if (!defined(SEMAPHORES_NOMMES)) || defined(IPCS_SYSV)
       sem_post(&((*s_queue_signaux).signalisation));
   #   else
       sem_post(semaphore_signalisation);
   #   endif
   
       pthread_join((*s_queue_signaux).thread_signaux, NULL);
   
 #   ifdef IPCS_SYSV // SystemV  #   ifdef IPCS_SYSV // SystemV
 #       ifndef OS2  #       ifndef OS2
             // Il faut commencer par éliminer le sémaphore.              // Il faut commencer par éliminer le sémaphore.
Line 2926  destruction_queue_signaux(struct_process Line 3380  destruction_queue_signaux(struct_process
             }              }
   
             unlink((*s_queue_signaux).semaphore.path);              unlink((*s_queue_signaux).semaphore.path);
               free((*s_queue_signaux).semaphore.path);
   
               if (semctl((*s_queue_signaux).signalisation.sem, 0, IPC_RMID) == -1)
               {
                   (*s_etat_processus).erreur_systeme = d_es_processus;
                   return;
               }
   
               unlink((*s_queue_signaux).signalisation.path);
               free((*s_queue_signaux).signalisation.path);
   
             if (shmdt(s_queue_signaux) == -1)              if (shmdt(s_queue_signaux) == -1)
             {              {
Line 2952  destruction_queue_signaux(struct_process Line 3416  destruction_queue_signaux(struct_process
             sem_close(&((*s_queue_signaux).semaphore));              sem_close(&((*s_queue_signaux).semaphore));
             sem_destroy(&((*s_queue_signaux).semaphore));              sem_destroy(&((*s_queue_signaux).semaphore));
   
               sem_close(&((*s_queue_signaux).signalisation));
               sem_destroy(&((*s_queue_signaux).signalisation));
   
             if (DosFreeMem(s_queue_signaux) != 0)              if (DosFreeMem(s_queue_signaux) != 0)
             {              {
                 (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;                  (*s_etat_processus).erreur_systeme = d_es_allocation_memoire;
Line 2962  destruction_queue_signaux(struct_process Line 3429  destruction_queue_signaux(struct_process
 #       ifndef SEMAPHORES_NOMMES  #       ifndef SEMAPHORES_NOMMES
             sem_close(&((*s_queue_signaux).semaphore));              sem_close(&((*s_queue_signaux).semaphore));
             sem_destroy(&((*s_queue_signaux).semaphore));              sem_destroy(&((*s_queue_signaux).semaphore));
   
               sem_close(&((*s_queue_signaux).signalisation));
               sem_destroy(&((*s_queue_signaux).signalisation));
 #       else  #       else
             sem_close(semaphore_queue_signaux);              sem_close(semaphore_queue_signaux);
             sem_destroy2(semaphore_queue_signaux, getpid(), SEM_QUEUE);              sem_destroy2(semaphore_queue_signaux, getpid(), SEM_QUEUE);
   
               sem_close(semaphore_signalisation);
               sem_destroy2(semaphore_signalisation, getpid(), SEM_SIGNALISATION);
 #       endif  #       endif
   
         if (munmap(s_queue_signaux, sizeof(struct_queue_signaux)) != 0)          if (munmap(s_queue_signaux, sizeof(struct_queue_signaux)) != 0)

Removed from v.1.88  
changed lines
  Added in v.1.125


CVSweb interface <joel.bertrand@systella.fr>