File:  [local] / rpl / lapack / lapack / zupmtr.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:22 2011 UTC (12 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE ZUPMTR( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
    2:      $                   INFO )
    3: *
    4: *  -- LAPACK routine (version 3.3.1) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *  -- April 2011                                                      --
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          SIDE, TRANS, UPLO
   11:       INTEGER            INFO, LDC, M, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       COMPLEX*16         AP( * ), C( LDC, * ), TAU( * ), WORK( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZUPMTR overwrites the general complex M-by-N matrix C with
   21: *
   22: *                  SIDE = 'L'     SIDE = 'R'
   23: *  TRANS = 'N':      Q * C          C * Q
   24: *  TRANS = 'C':      Q**H * C       C * Q**H
   25: *
   26: *  where Q is a complex unitary matrix of order nq, with nq = m if
   27: *  SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
   28: *  nq-1 elementary reflectors, as returned by ZHPTRD using packed
   29: *  storage:
   30: *
   31: *  if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
   32: *
   33: *  if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
   34: *
   35: *  Arguments
   36: *  =========
   37: *
   38: *  SIDE    (input) CHARACTER*1
   39: *          = 'L': apply Q or Q**H from the Left;
   40: *          = 'R': apply Q or Q**H from the Right.
   41: *
   42: *  UPLO    (input) CHARACTER*1
   43: *          = 'U': Upper triangular packed storage used in previous
   44: *                 call to ZHPTRD;
   45: *          = 'L': Lower triangular packed storage used in previous
   46: *                 call to ZHPTRD.
   47: *
   48: *  TRANS   (input) CHARACTER*1
   49: *          = 'N':  No transpose, apply Q;
   50: *          = 'C':  Conjugate transpose, apply Q**H.
   51: *
   52: *  M       (input) INTEGER
   53: *          The number of rows of the matrix C. M >= 0.
   54: *
   55: *  N       (input) INTEGER
   56: *          The number of columns of the matrix C. N >= 0.
   57: *
   58: *  AP      (input) COMPLEX*16 array, dimension
   59: *                               (M*(M+1)/2) if SIDE = 'L'
   60: *                               (N*(N+1)/2) if SIDE = 'R'
   61: *          The vectors which define the elementary reflectors, as
   62: *          returned by ZHPTRD.  AP is modified by the routine but
   63: *          restored on exit.
   64: *
   65: *  TAU     (input) COMPLEX*16 array, dimension (M-1) if SIDE = 'L'
   66: *                                     or (N-1) if SIDE = 'R'
   67: *          TAU(i) must contain the scalar factor of the elementary
   68: *          reflector H(i), as returned by ZHPTRD.
   69: *
   70: *  C       (input/output) COMPLEX*16 array, dimension (LDC,N)
   71: *          On entry, the M-by-N matrix C.
   72: *          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
   73: *
   74: *  LDC     (input) INTEGER
   75: *          The leading dimension of the array C. LDC >= max(1,M).
   76: *
   77: *  WORK    (workspace) COMPLEX*16 array, dimension
   78: *                                   (N) if SIDE = 'L'
   79: *                                   (M) if SIDE = 'R'
   80: *
   81: *  INFO    (output) INTEGER
   82: *          = 0:  successful exit
   83: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   84: *
   85: *  =====================================================================
   86: *
   87: *     .. Parameters ..
   88:       COMPLEX*16         ONE
   89:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
   90: *     ..
   91: *     .. Local Scalars ..
   92:       LOGICAL            FORWRD, LEFT, NOTRAN, UPPER
   93:       INTEGER            I, I1, I2, I3, IC, II, JC, MI, NI, NQ
   94:       COMPLEX*16         AII, TAUI
   95: *     ..
   96: *     .. External Functions ..
   97:       LOGICAL            LSAME
   98:       EXTERNAL           LSAME
   99: *     ..
  100: *     .. External Subroutines ..
  101:       EXTERNAL           XERBLA, ZLARF
  102: *     ..
  103: *     .. Intrinsic Functions ..
  104:       INTRINSIC          DCONJG, MAX
  105: *     ..
  106: *     .. Executable Statements ..
  107: *
  108: *     Test the input arguments
  109: *
  110:       INFO = 0
  111:       LEFT = LSAME( SIDE, 'L' )
  112:       NOTRAN = LSAME( TRANS, 'N' )
  113:       UPPER = LSAME( UPLO, 'U' )
  114: *
  115: *     NQ is the order of Q
  116: *
  117:       IF( LEFT ) THEN
  118:          NQ = M
  119:       ELSE
  120:          NQ = N
  121:       END IF
  122:       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  123:          INFO = -1
  124:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  125:          INFO = -2
  126:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  127:          INFO = -3
  128:       ELSE IF( M.LT.0 ) THEN
  129:          INFO = -4
  130:       ELSE IF( N.LT.0 ) THEN
  131:          INFO = -5
  132:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  133:          INFO = -9
  134:       END IF
  135:       IF( INFO.NE.0 ) THEN
  136:          CALL XERBLA( 'ZUPMTR', -INFO )
  137:          RETURN
  138:       END IF
  139: *
  140: *     Quick return if possible
  141: *
  142:       IF( M.EQ.0 .OR. N.EQ.0 )
  143:      $   RETURN
  144: *
  145:       IF( UPPER ) THEN
  146: *
  147: *        Q was determined by a call to ZHPTRD with UPLO = 'U'
  148: *
  149:          FORWRD = ( LEFT .AND. NOTRAN ) .OR.
  150:      $            ( .NOT.LEFT .AND. .NOT.NOTRAN )
  151: *
  152:          IF( FORWRD ) THEN
  153:             I1 = 1
  154:             I2 = NQ - 1
  155:             I3 = 1
  156:             II = 2
  157:          ELSE
  158:             I1 = NQ - 1
  159:             I2 = 1
  160:             I3 = -1
  161:             II = NQ*( NQ+1 ) / 2 - 1
  162:          END IF
  163: *
  164:          IF( LEFT ) THEN
  165:             NI = N
  166:          ELSE
  167:             MI = M
  168:          END IF
  169: *
  170:          DO 10 I = I1, I2, I3
  171:             IF( LEFT ) THEN
  172: *
  173: *              H(i) or H(i)**H is applied to C(1:i,1:n)
  174: *
  175:                MI = I
  176:             ELSE
  177: *
  178: *              H(i) or H(i)**H is applied to C(1:m,1:i)
  179: *
  180:                NI = I
  181:             END IF
  182: *
  183: *           Apply H(i) or H(i)**H
  184: *
  185:             IF( NOTRAN ) THEN
  186:                TAUI = TAU( I )
  187:             ELSE
  188:                TAUI = DCONJG( TAU( I ) )
  189:             END IF
  190:             AII = AP( II )
  191:             AP( II ) = ONE
  192:             CALL ZLARF( SIDE, MI, NI, AP( II-I+1 ), 1, TAUI, C, LDC,
  193:      $                  WORK )
  194:             AP( II ) = AII
  195: *
  196:             IF( FORWRD ) THEN
  197:                II = II + I + 2
  198:             ELSE
  199:                II = II - I - 1
  200:             END IF
  201:    10    CONTINUE
  202:       ELSE
  203: *
  204: *        Q was determined by a call to ZHPTRD with UPLO = 'L'.
  205: *
  206:          FORWRD = ( LEFT .AND. .NOT.NOTRAN ) .OR.
  207:      $            ( .NOT.LEFT .AND. NOTRAN )
  208: *
  209:          IF( FORWRD ) THEN
  210:             I1 = 1
  211:             I2 = NQ - 1
  212:             I3 = 1
  213:             II = 2
  214:          ELSE
  215:             I1 = NQ - 1
  216:             I2 = 1
  217:             I3 = -1
  218:             II = NQ*( NQ+1 ) / 2 - 1
  219:          END IF
  220: *
  221:          IF( LEFT ) THEN
  222:             NI = N
  223:             JC = 1
  224:          ELSE
  225:             MI = M
  226:             IC = 1
  227:          END IF
  228: *
  229:          DO 20 I = I1, I2, I3
  230:             AII = AP( II )
  231:             AP( II ) = ONE
  232:             IF( LEFT ) THEN
  233: *
  234: *              H(i) or H(i)**H is applied to C(i+1:m,1:n)
  235: *
  236:                MI = M - I
  237:                IC = I + 1
  238:             ELSE
  239: *
  240: *              H(i) or H(i)**H is applied to C(1:m,i+1:n)
  241: *
  242:                NI = N - I
  243:                JC = I + 1
  244:             END IF
  245: *
  246: *           Apply H(i) or H(i)**H
  247: *
  248:             IF( NOTRAN ) THEN
  249:                TAUI = TAU( I )
  250:             ELSE
  251:                TAUI = DCONJG( TAU( I ) )
  252:             END IF
  253:             CALL ZLARF( SIDE, MI, NI, AP( II ), 1, TAUI, C( IC, JC ),
  254:      $                  LDC, WORK )
  255:             AP( II ) = AII
  256: *
  257:             IF( FORWRD ) THEN
  258:                II = II + NQ - I + 1
  259:             ELSE
  260:                II = II - NQ + I - 2
  261:             END IF
  262:    20    CONTINUE
  263:       END IF
  264:       RETURN
  265: *
  266: *     End of ZUPMTR
  267: *
  268:       END

CVSweb interface <joel.bertrand@systella.fr>