Annotation of rpl/lapack/lapack/zunmr3.f, revision 1.19

1.12      bertrand    1: *> \brief \b ZUNMR3 multiplies a general matrix by the unitary matrix from a RZ factorization determined by ctzrzf (unblocked algorithm).
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZUNMR3 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmr3.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmr3.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmr3.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
                     22: *                          WORK, INFO )
1.16      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          SIDE, TRANS
                     26: *       INTEGER            INFO, K, L, LDA, LDC, M, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
                     30: *       ..
1.16      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZUNMR3 overwrites the general complex m by n matrix C with
                     39: *>
                     40: *>       Q * C  if SIDE = 'L' and TRANS = 'N', or
                     41: *>
                     42: *>       Q**H* C  if SIDE = 'L' and TRANS = 'C', or
                     43: *>
                     44: *>       C * Q  if SIDE = 'R' and TRANS = 'N', or
                     45: *>
                     46: *>       C * Q**H if SIDE = 'R' and TRANS = 'C',
                     47: *>
                     48: *> where Q is a complex unitary matrix defined as the product of k
                     49: *> elementary reflectors
                     50: *>
                     51: *>       Q = H(1) H(2) . . . H(k)
                     52: *>
                     53: *> as returned by ZTZRZF. Q is of order m if SIDE = 'L' and of order n
                     54: *> if SIDE = 'R'.
                     55: *> \endverbatim
                     56: *
                     57: *  Arguments:
                     58: *  ==========
                     59: *
                     60: *> \param[in] SIDE
                     61: *> \verbatim
                     62: *>          SIDE is CHARACTER*1
                     63: *>          = 'L': apply Q or Q**H from the Left
                     64: *>          = 'R': apply Q or Q**H from the Right
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] TRANS
                     68: *> \verbatim
                     69: *>          TRANS is CHARACTER*1
                     70: *>          = 'N': apply Q  (No transpose)
                     71: *>          = 'C': apply Q**H (Conjugate transpose)
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] M
                     75: *> \verbatim
                     76: *>          M is INTEGER
                     77: *>          The number of rows of the matrix C. M >= 0.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] N
                     81: *> \verbatim
                     82: *>          N is INTEGER
                     83: *>          The number of columns of the matrix C. N >= 0.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] K
                     87: *> \verbatim
                     88: *>          K is INTEGER
                     89: *>          The number of elementary reflectors whose product defines
                     90: *>          the matrix Q.
                     91: *>          If SIDE = 'L', M >= K >= 0;
                     92: *>          if SIDE = 'R', N >= K >= 0.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] L
                     96: *> \verbatim
                     97: *>          L is INTEGER
                     98: *>          The number of columns of the matrix A containing
                     99: *>          the meaningful part of the Householder reflectors.
                    100: *>          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] A
                    104: *> \verbatim
                    105: *>          A is COMPLEX*16 array, dimension
                    106: *>                               (LDA,M) if SIDE = 'L',
                    107: *>                               (LDA,N) if SIDE = 'R'
                    108: *>          The i-th row must contain the vector which defines the
                    109: *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
                    110: *>          ZTZRZF in the last k rows of its array argument A.
                    111: *>          A is modified by the routine but restored on exit.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in] LDA
                    115: *> \verbatim
                    116: *>          LDA is INTEGER
                    117: *>          The leading dimension of the array A. LDA >= max(1,K).
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in] TAU
                    121: *> \verbatim
                    122: *>          TAU is COMPLEX*16 array, dimension (K)
                    123: *>          TAU(i) must contain the scalar factor of the elementary
                    124: *>          reflector H(i), as returned by ZTZRZF.
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in,out] C
                    128: *> \verbatim
                    129: *>          C is COMPLEX*16 array, dimension (LDC,N)
                    130: *>          On entry, the m-by-n matrix C.
                    131: *>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] LDC
                    135: *> \verbatim
                    136: *>          LDC is INTEGER
                    137: *>          The leading dimension of the array C. LDC >= max(1,M).
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[out] WORK
                    141: *> \verbatim
                    142: *>          WORK is COMPLEX*16 array, dimension
                    143: *>                                   (N) if SIDE = 'L',
                    144: *>                                   (M) if SIDE = 'R'
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[out] INFO
                    148: *> \verbatim
                    149: *>          INFO is INTEGER
                    150: *>          = 0: successful exit
                    151: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                    152: *> \endverbatim
                    153: *
                    154: *  Authors:
                    155: *  ========
                    156: *
1.16      bertrand  157: *> \author Univ. of Tennessee
                    158: *> \author Univ. of California Berkeley
                    159: *> \author Univ. of Colorado Denver
                    160: *> \author NAG Ltd.
1.9       bertrand  161: *
                    162: *> \ingroup complex16OTHERcomputational
                    163: *
                    164: *> \par Contributors:
                    165: *  ==================
                    166: *>
                    167: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
                    168: *
                    169: *> \par Further Details:
                    170: *  =====================
                    171: *>
                    172: *> \verbatim
                    173: *> \endverbatim
                    174: *>
                    175: *  =====================================================================
1.1       bertrand  176:       SUBROUTINE ZUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
                    177:      $                   WORK, INFO )
                    178: *
1.19    ! bertrand  179: *  -- LAPACK computational routine --
1.1       bertrand  180: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    181: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    182: *
                    183: *     .. Scalar Arguments ..
                    184:       CHARACTER          SIDE, TRANS
                    185:       INTEGER            INFO, K, L, LDA, LDC, M, N
                    186: *     ..
                    187: *     .. Array Arguments ..
                    188:       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
                    189: *     ..
                    190: *
                    191: *  =====================================================================
                    192: *
                    193: *     .. Local Scalars ..
                    194:       LOGICAL            LEFT, NOTRAN
                    195:       INTEGER            I, I1, I2, I3, IC, JA, JC, MI, NI, NQ
                    196:       COMPLEX*16         TAUI
                    197: *     ..
                    198: *     .. External Functions ..
                    199:       LOGICAL            LSAME
                    200:       EXTERNAL           LSAME
                    201: *     ..
                    202: *     .. External Subroutines ..
                    203:       EXTERNAL           XERBLA, ZLARZ
                    204: *     ..
                    205: *     .. Intrinsic Functions ..
                    206:       INTRINSIC          DCONJG, MAX
                    207: *     ..
                    208: *     .. Executable Statements ..
                    209: *
                    210: *     Test the input arguments
                    211: *
                    212:       INFO = 0
                    213:       LEFT = LSAME( SIDE, 'L' )
                    214:       NOTRAN = LSAME( TRANS, 'N' )
                    215: *
                    216: *     NQ is the order of Q
                    217: *
                    218:       IF( LEFT ) THEN
                    219:          NQ = M
                    220:       ELSE
                    221:          NQ = N
                    222:       END IF
                    223:       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
                    224:          INFO = -1
                    225:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
                    226:          INFO = -2
                    227:       ELSE IF( M.LT.0 ) THEN
                    228:          INFO = -3
                    229:       ELSE IF( N.LT.0 ) THEN
                    230:          INFO = -4
                    231:       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
                    232:          INFO = -5
                    233:       ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR.
                    234:      $         ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN
                    235:          INFO = -6
                    236:       ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
                    237:          INFO = -8
                    238:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
                    239:          INFO = -11
                    240:       END IF
                    241:       IF( INFO.NE.0 ) THEN
                    242:          CALL XERBLA( 'ZUNMR3', -INFO )
                    243:          RETURN
                    244:       END IF
                    245: *
                    246: *     Quick return if possible
                    247: *
                    248:       IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
                    249:      $   RETURN
                    250: *
                    251:       IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
                    252:          I1 = 1
                    253:          I2 = K
                    254:          I3 = 1
                    255:       ELSE
                    256:          I1 = K
                    257:          I2 = 1
                    258:          I3 = -1
                    259:       END IF
                    260: *
                    261:       IF( LEFT ) THEN
                    262:          NI = N
                    263:          JA = M - L + 1
                    264:          JC = 1
                    265:       ELSE
                    266:          MI = M
                    267:          JA = N - L + 1
                    268:          IC = 1
                    269:       END IF
                    270: *
                    271:       DO 10 I = I1, I2, I3
                    272:          IF( LEFT ) THEN
                    273: *
1.8       bertrand  274: *           H(i) or H(i)**H is applied to C(i:m,1:n)
1.1       bertrand  275: *
                    276:             MI = M - I + 1
                    277:             IC = I
                    278:          ELSE
                    279: *
1.8       bertrand  280: *           H(i) or H(i)**H is applied to C(1:m,i:n)
1.1       bertrand  281: *
                    282:             NI = N - I + 1
                    283:             JC = I
                    284:          END IF
                    285: *
1.8       bertrand  286: *        Apply H(i) or H(i)**H
1.1       bertrand  287: *
                    288:          IF( NOTRAN ) THEN
                    289:             TAUI = TAU( I )
                    290:          ELSE
                    291:             TAUI = DCONJG( TAU( I ) )
                    292:          END IF
                    293:          CALL ZLARZ( SIDE, MI, NI, L, A( I, JA ), LDA, TAUI,
                    294:      $               C( IC, JC ), LDC, WORK )
                    295: *
                    296:    10 CONTINUE
                    297: *
                    298:       RETURN
                    299: *
                    300: *     End of ZUNMR3
                    301: *
                    302:       END

CVSweb interface <joel.bertrand@systella.fr>