File:  [local] / rpl / lapack / lapack / zunmqr.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:22 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE ZUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
    2:      $                   WORK, LWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.3.1) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *  -- April 2011                                                      --
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          SIDE, TRANS
   11:       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZUNMQR overwrites the general complex M-by-N matrix C with
   21: *
   22: *                  SIDE = 'L'     SIDE = 'R'
   23: *  TRANS = 'N':      Q * C          C * Q
   24: *  TRANS = 'C':      Q**H * C       C * Q**H
   25: *
   26: *  where Q is a complex unitary matrix defined as the product of k
   27: *  elementary reflectors
   28: *
   29: *        Q = H(1) H(2) . . . H(k)
   30: *
   31: *  as returned by ZGEQRF. Q is of order M if SIDE = 'L' and of order N
   32: *  if SIDE = 'R'.
   33: *
   34: *  Arguments
   35: *  =========
   36: *
   37: *  SIDE    (input) CHARACTER*1
   38: *          = 'L': apply Q or Q**H from the Left;
   39: *          = 'R': apply Q or Q**H from the Right.
   40: *
   41: *  TRANS   (input) CHARACTER*1
   42: *          = 'N':  No transpose, apply Q;
   43: *          = 'C':  Conjugate transpose, apply Q**H.
   44: *
   45: *  M       (input) INTEGER
   46: *          The number of rows of the matrix C. M >= 0.
   47: *
   48: *  N       (input) INTEGER
   49: *          The number of columns of the matrix C. N >= 0.
   50: *
   51: *  K       (input) INTEGER
   52: *          The number of elementary reflectors whose product defines
   53: *          the matrix Q.
   54: *          If SIDE = 'L', M >= K >= 0;
   55: *          if SIDE = 'R', N >= K >= 0.
   56: *
   57: *  A       (input) COMPLEX*16 array, dimension (LDA,K)
   58: *          The i-th column must contain the vector which defines the
   59: *          elementary reflector H(i), for i = 1,2,...,k, as returned by
   60: *          ZGEQRF in the first k columns of its array argument A.
   61: *          A is modified by the routine but restored on exit.
   62: *
   63: *  LDA     (input) INTEGER
   64: *          The leading dimension of the array A.
   65: *          If SIDE = 'L', LDA >= max(1,M);
   66: *          if SIDE = 'R', LDA >= max(1,N).
   67: *
   68: *  TAU     (input) COMPLEX*16 array, dimension (K)
   69: *          TAU(i) must contain the scalar factor of the elementary
   70: *          reflector H(i), as returned by ZGEQRF.
   71: *
   72: *  C       (input/output) COMPLEX*16 array, dimension (LDC,N)
   73: *          On entry, the M-by-N matrix C.
   74: *          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
   75: *
   76: *  LDC     (input) INTEGER
   77: *          The leading dimension of the array C. LDC >= max(1,M).
   78: *
   79: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
   80: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   81: *
   82: *  LWORK   (input) INTEGER
   83: *          The dimension of the array WORK.
   84: *          If SIDE = 'L', LWORK >= max(1,N);
   85: *          if SIDE = 'R', LWORK >= max(1,M).
   86: *          For optimum performance LWORK >= N*NB if SIDE = 'L', and
   87: *          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
   88: *          blocksize.
   89: *
   90: *          If LWORK = -1, then a workspace query is assumed; the routine
   91: *          only calculates the optimal size of the WORK array, returns
   92: *          this value as the first entry of the WORK array, and no error
   93: *          message related to LWORK is issued by XERBLA.
   94: *
   95: *  INFO    (output) INTEGER
   96: *          = 0:  successful exit
   97: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   98: *
   99: *  =====================================================================
  100: *
  101: *     .. Parameters ..
  102:       INTEGER            NBMAX, LDT
  103:       PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
  104: *     ..
  105: *     .. Local Scalars ..
  106:       LOGICAL            LEFT, LQUERY, NOTRAN
  107:       INTEGER            I, I1, I2, I3, IB, IC, IINFO, IWS, JC, LDWORK,
  108:      $                   LWKOPT, MI, NB, NBMIN, NI, NQ, NW
  109: *     ..
  110: *     .. Local Arrays ..
  111:       COMPLEX*16         T( LDT, NBMAX )
  112: *     ..
  113: *     .. External Functions ..
  114:       LOGICAL            LSAME
  115:       INTEGER            ILAENV
  116:       EXTERNAL           LSAME, ILAENV
  117: *     ..
  118: *     .. External Subroutines ..
  119:       EXTERNAL           XERBLA, ZLARFB, ZLARFT, ZUNM2R
  120: *     ..
  121: *     .. Intrinsic Functions ..
  122:       INTRINSIC          MAX, MIN
  123: *     ..
  124: *     .. Executable Statements ..
  125: *
  126: *     Test the input arguments
  127: *
  128:       INFO = 0
  129:       LEFT = LSAME( SIDE, 'L' )
  130:       NOTRAN = LSAME( TRANS, 'N' )
  131:       LQUERY = ( LWORK.EQ.-1 )
  132: *
  133: *     NQ is the order of Q and NW is the minimum dimension of WORK
  134: *
  135:       IF( LEFT ) THEN
  136:          NQ = M
  137:          NW = N
  138:       ELSE
  139:          NQ = N
  140:          NW = M
  141:       END IF
  142:       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  143:          INFO = -1
  144:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  145:          INFO = -2
  146:       ELSE IF( M.LT.0 ) THEN
  147:          INFO = -3
  148:       ELSE IF( N.LT.0 ) THEN
  149:          INFO = -4
  150:       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
  151:          INFO = -5
  152:       ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
  153:          INFO = -7
  154:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  155:          INFO = -10
  156:       ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
  157:          INFO = -12
  158:       END IF
  159: *
  160:       IF( INFO.EQ.0 ) THEN
  161: *
  162: *        Determine the block size.  NB may be at most NBMAX, where NBMAX
  163: *        is used to define the local array T.
  164: *
  165:          NB = MIN( NBMAX, ILAENV( 1, 'ZUNMQR', SIDE // TRANS, M, N, K,
  166:      $        -1 ) )
  167:          LWKOPT = MAX( 1, NW )*NB
  168:          WORK( 1 ) = LWKOPT
  169:       END IF
  170: *
  171:       IF( INFO.NE.0 ) THEN
  172:          CALL XERBLA( 'ZUNMQR', -INFO )
  173:          RETURN
  174:       ELSE IF( LQUERY ) THEN
  175:          RETURN
  176:       END IF
  177: *
  178: *     Quick return if possible
  179: *
  180:       IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
  181:          WORK( 1 ) = 1
  182:          RETURN
  183:       END IF
  184: *
  185:       NBMIN = 2
  186:       LDWORK = NW
  187:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
  188:          IWS = NW*NB
  189:          IF( LWORK.LT.IWS ) THEN
  190:             NB = LWORK / LDWORK
  191:             NBMIN = MAX( 2, ILAENV( 2, 'ZUNMQR', SIDE // TRANS, M, N, K,
  192:      $              -1 ) )
  193:          END IF
  194:       ELSE
  195:          IWS = NW
  196:       END IF
  197: *
  198:       IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
  199: *
  200: *        Use unblocked code
  201: *
  202:          CALL ZUNM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
  203:      $                IINFO )
  204:       ELSE
  205: *
  206: *        Use blocked code
  207: *
  208:          IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
  209:      $       ( .NOT.LEFT .AND. NOTRAN ) ) THEN
  210:             I1 = 1
  211:             I2 = K
  212:             I3 = NB
  213:          ELSE
  214:             I1 = ( ( K-1 ) / NB )*NB + 1
  215:             I2 = 1
  216:             I3 = -NB
  217:          END IF
  218: *
  219:          IF( LEFT ) THEN
  220:             NI = N
  221:             JC = 1
  222:          ELSE
  223:             MI = M
  224:             IC = 1
  225:          END IF
  226: *
  227:          DO 10 I = I1, I2, I3
  228:             IB = MIN( NB, K-I+1 )
  229: *
  230: *           Form the triangular factor of the block reflector
  231: *           H = H(i) H(i+1) . . . H(i+ib-1)
  232: *
  233:             CALL ZLARFT( 'Forward', 'Columnwise', NQ-I+1, IB, A( I, I ),
  234:      $                   LDA, TAU( I ), T, LDT )
  235:             IF( LEFT ) THEN
  236: *
  237: *              H or H**H is applied to C(i:m,1:n)
  238: *
  239:                MI = M - I + 1
  240:                IC = I
  241:             ELSE
  242: *
  243: *              H or H**H is applied to C(1:m,i:n)
  244: *
  245:                NI = N - I + 1
  246:                JC = I
  247:             END IF
  248: *
  249: *           Apply H or H**H
  250: *
  251:             CALL ZLARFB( SIDE, TRANS, 'Forward', 'Columnwise', MI, NI,
  252:      $                   IB, A( I, I ), LDA, T, LDT, C( IC, JC ), LDC,
  253:      $                   WORK, LDWORK )
  254:    10    CONTINUE
  255:       END IF
  256:       WORK( 1 ) = LWKOPT
  257:       RETURN
  258: *
  259: *     End of ZUNMQR
  260: *
  261:       END

CVSweb interface <joel.bertrand@systella.fr>