Annotation of rpl/lapack/lapack/zunmql.f, revision 1.20

1.9       bertrand    1: *> \brief \b ZUNMQL
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download ZUNMQL + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmql.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmql.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmql.f">
1.9       bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZUNMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
                     22: *                          WORK, LWORK, INFO )
1.17      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          SIDE, TRANS
                     26: *       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
                     30: *       ..
1.17      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZUNMQL overwrites the general complex M-by-N matrix C with
                     39: *>
                     40: *>                 SIDE = 'L'     SIDE = 'R'
                     41: *> TRANS = 'N':      Q * C          C * Q
                     42: *> TRANS = 'C':      Q**H * C       C * Q**H
                     43: *>
                     44: *> where Q is a complex unitary matrix defined as the product of k
                     45: *> elementary reflectors
                     46: *>
                     47: *>       Q = H(k) . . . H(2) H(1)
                     48: *>
                     49: *> as returned by ZGEQLF. Q is of order M if SIDE = 'L' and of order N
                     50: *> if SIDE = 'R'.
                     51: *> \endverbatim
                     52: *
                     53: *  Arguments:
                     54: *  ==========
                     55: *
                     56: *> \param[in] SIDE
                     57: *> \verbatim
                     58: *>          SIDE is CHARACTER*1
                     59: *>          = 'L': apply Q or Q**H from the Left;
                     60: *>          = 'R': apply Q or Q**H from the Right.
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in] TRANS
                     64: *> \verbatim
                     65: *>          TRANS is CHARACTER*1
                     66: *>          = 'N':  No transpose, apply Q;
1.20    ! bertrand   67: *>          = 'C':  Conjugate transpose, apply Q**H.
1.9       bertrand   68: *> \endverbatim
                     69: *>
                     70: *> \param[in] M
                     71: *> \verbatim
                     72: *>          M is INTEGER
                     73: *>          The number of rows of the matrix C. M >= 0.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] N
                     77: *> \verbatim
                     78: *>          N is INTEGER
                     79: *>          The number of columns of the matrix C. N >= 0.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] K
                     83: *> \verbatim
                     84: *>          K is INTEGER
                     85: *>          The number of elementary reflectors whose product defines
                     86: *>          the matrix Q.
                     87: *>          If SIDE = 'L', M >= K >= 0;
                     88: *>          if SIDE = 'R', N >= K >= 0.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] A
                     92: *> \verbatim
                     93: *>          A is COMPLEX*16 array, dimension (LDA,K)
                     94: *>          The i-th column must contain the vector which defines the
                     95: *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
                     96: *>          ZGEQLF in the last k columns of its array argument A.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] LDA
                    100: *> \verbatim
                    101: *>          LDA is INTEGER
                    102: *>          The leading dimension of the array A.
                    103: *>          If SIDE = 'L', LDA >= max(1,M);
                    104: *>          if SIDE = 'R', LDA >= max(1,N).
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] TAU
                    108: *> \verbatim
                    109: *>          TAU is COMPLEX*16 array, dimension (K)
                    110: *>          TAU(i) must contain the scalar factor of the elementary
                    111: *>          reflector H(i), as returned by ZGEQLF.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in,out] C
                    115: *> \verbatim
                    116: *>          C is COMPLEX*16 array, dimension (LDC,N)
                    117: *>          On entry, the M-by-N matrix C.
                    118: *>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] LDC
                    122: *> \verbatim
                    123: *>          LDC is INTEGER
                    124: *>          The leading dimension of the array C. LDC >= max(1,M).
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[out] WORK
                    128: *> \verbatim
                    129: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    130: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[in] LWORK
                    134: *> \verbatim
                    135: *>          LWORK is INTEGER
                    136: *>          The dimension of the array WORK.
                    137: *>          If SIDE = 'L', LWORK >= max(1,N);
                    138: *>          if SIDE = 'R', LWORK >= max(1,M).
1.20    ! bertrand  139: *>          For good performance, LWORK should generally be larger.
1.9       bertrand  140: *>
                    141: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    142: *>          only calculates the optimal size of the WORK array, returns
                    143: *>          this value as the first entry of the WORK array, and no error
                    144: *>          message related to LWORK is issued by XERBLA.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[out] INFO
                    148: *> \verbatim
                    149: *>          INFO is INTEGER
                    150: *>          = 0:  successful exit
                    151: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    152: *> \endverbatim
                    153: *
                    154: *  Authors:
                    155: *  ========
                    156: *
1.17      bertrand  157: *> \author Univ. of Tennessee
                    158: *> \author Univ. of California Berkeley
                    159: *> \author Univ. of Colorado Denver
                    160: *> \author NAG Ltd.
1.9       bertrand  161: *
                    162: *> \ingroup complex16OTHERcomputational
                    163: *
                    164: *  =====================================================================
1.1       bertrand  165:       SUBROUTINE ZUNMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
                    166:      $                   WORK, LWORK, INFO )
                    167: *
1.20    ! bertrand  168: *  -- LAPACK computational routine --
1.1       bertrand  169: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    170: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    171: *
                    172: *     .. Scalar Arguments ..
                    173:       CHARACTER          SIDE, TRANS
                    174:       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
                    175: *     ..
                    176: *     .. Array Arguments ..
                    177:       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
                    178: *     ..
                    179: *
                    180: *  =====================================================================
                    181: *
                    182: *     .. Parameters ..
1.15      bertrand  183:       INTEGER            NBMAX, LDT, TSIZE
                    184:       PARAMETER          ( NBMAX = 64, LDT = NBMAX+1,
                    185:      $                     TSIZE = LDT*NBMAX )
1.1       bertrand  186: *     ..
                    187: *     .. Local Scalars ..
                    188:       LOGICAL            LEFT, LQUERY, NOTRAN
1.15      bertrand  189:       INTEGER            I, I1, I2, I3, IB, IINFO, IWT, LDWORK, LWKOPT,
1.1       bertrand  190:      $                   MI, NB, NBMIN, NI, NQ, NW
                    191: *     ..
                    192: *     .. External Functions ..
                    193:       LOGICAL            LSAME
                    194:       INTEGER            ILAENV
                    195:       EXTERNAL           LSAME, ILAENV
                    196: *     ..
                    197: *     .. External Subroutines ..
                    198:       EXTERNAL           XERBLA, ZLARFB, ZLARFT, ZUNM2L
                    199: *     ..
                    200: *     .. Intrinsic Functions ..
                    201:       INTRINSIC          MAX, MIN
                    202: *     ..
                    203: *     .. Executable Statements ..
                    204: *
                    205: *     Test the input arguments
                    206: *
                    207:       INFO = 0
                    208:       LEFT = LSAME( SIDE, 'L' )
                    209:       NOTRAN = LSAME( TRANS, 'N' )
                    210:       LQUERY = ( LWORK.EQ.-1 )
                    211: *
                    212: *     NQ is the order of Q and NW is the minimum dimension of WORK
                    213: *
                    214:       IF( LEFT ) THEN
                    215:          NQ = M
                    216:          NW = MAX( 1, N )
                    217:       ELSE
                    218:          NQ = N
                    219:          NW = MAX( 1, M )
                    220:       END IF
                    221:       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
                    222:          INFO = -1
                    223:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
                    224:          INFO = -2
                    225:       ELSE IF( M.LT.0 ) THEN
                    226:          INFO = -3
                    227:       ELSE IF( N.LT.0 ) THEN
                    228:          INFO = -4
                    229:       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
                    230:          INFO = -5
                    231:       ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
                    232:          INFO = -7
                    233:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
                    234:          INFO = -10
1.15      bertrand  235:       ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
                    236:          INFO = -12
1.1       bertrand  237:       END IF
                    238: *
                    239:       IF( INFO.EQ.0 ) THEN
1.15      bertrand  240: *
                    241: *        Compute the workspace requirements
                    242: *
1.1       bertrand  243:          IF( M.EQ.0 .OR. N.EQ.0 ) THEN
                    244:             LWKOPT = 1
                    245:          ELSE
                    246:             NB = MIN( NBMAX, ILAENV( 1, 'ZUNMQL', SIDE // TRANS, M, N,
                    247:      $                               K, -1 ) )
1.15      bertrand  248:             LWKOPT = NW*NB + TSIZE
1.1       bertrand  249:          END IF
                    250:          WORK( 1 ) = LWKOPT
                    251:       END IF
                    252: *
                    253:       IF( INFO.NE.0 ) THEN
                    254:          CALL XERBLA( 'ZUNMQL', -INFO )
                    255:          RETURN
                    256:       ELSE IF( LQUERY ) THEN
                    257:          RETURN
                    258:       END IF
                    259: *
                    260: *     Quick return if possible
                    261: *
                    262:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
                    263:          RETURN
                    264:       END IF
                    265: *
                    266:       NBMIN = 2
                    267:       LDWORK = NW
                    268:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
1.20    ! bertrand  269:          IF( LWORK.LT.LWKOPT ) THEN
1.15      bertrand  270:             NB = (LWORK-TSIZE) / LDWORK
1.1       bertrand  271:             NBMIN = MAX( 2, ILAENV( 2, 'ZUNMQL', SIDE // TRANS, M, N, K,
                    272:      $              -1 ) )
                    273:          END IF
                    274:       END IF
                    275: *
                    276:       IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
                    277: *
                    278: *        Use unblocked code
                    279: *
                    280:          CALL ZUNM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
                    281:      $                IINFO )
                    282:       ELSE
                    283: *
                    284: *        Use blocked code
                    285: *
1.15      bertrand  286:          IWT = 1 + NW*NB
1.1       bertrand  287:          IF( ( LEFT .AND. NOTRAN ) .OR.
                    288:      $       ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
                    289:             I1 = 1
                    290:             I2 = K
                    291:             I3 = NB
                    292:          ELSE
                    293:             I1 = ( ( K-1 ) / NB )*NB + 1
                    294:             I2 = 1
                    295:             I3 = -NB
                    296:          END IF
                    297: *
                    298:          IF( LEFT ) THEN
                    299:             NI = N
                    300:          ELSE
                    301:             MI = M
                    302:          END IF
                    303: *
                    304:          DO 10 I = I1, I2, I3
                    305:             IB = MIN( NB, K-I+1 )
                    306: *
                    307: *           Form the triangular factor of the block reflector
                    308: *           H = H(i+ib-1) . . . H(i+1) H(i)
                    309: *
                    310:             CALL ZLARFT( 'Backward', 'Columnwise', NQ-K+I+IB-1, IB,
1.15      bertrand  311:      $                   A( 1, I ), LDA, TAU( I ), WORK( IWT ), LDT )
1.1       bertrand  312:             IF( LEFT ) THEN
                    313: *
1.8       bertrand  314: *              H or H**H is applied to C(1:m-k+i+ib-1,1:n)
1.1       bertrand  315: *
                    316:                MI = M - K + I + IB - 1
                    317:             ELSE
                    318: *
1.8       bertrand  319: *              H or H**H is applied to C(1:m,1:n-k+i+ib-1)
1.1       bertrand  320: *
                    321:                NI = N - K + I + IB - 1
                    322:             END IF
                    323: *
1.8       bertrand  324: *           Apply H or H**H
1.1       bertrand  325: *
                    326:             CALL ZLARFB( SIDE, TRANS, 'Backward', 'Columnwise', MI, NI,
1.15      bertrand  327:      $                   IB, A( 1, I ), LDA, WORK( IWT ), LDT, C, LDC,
                    328:      $                   WORK, LDWORK )
1.1       bertrand  329:    10    CONTINUE
                    330:       END IF
                    331:       WORK( 1 ) = LWKOPT
                    332:       RETURN
                    333: *
                    334: *     End of ZUNMQL
                    335: *
                    336:       END

CVSweb interface <joel.bertrand@systella.fr>