File:  [local] / rpl / lapack / lapack / zunml2.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE ZUNML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
    2:      $                   WORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          SIDE, TRANS
   11:       INTEGER            INFO, K, LDA, LDC, M, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZUNML2 overwrites the general complex m-by-n matrix C with
   21: *
   22: *        Q * C  if SIDE = 'L' and TRANS = 'N', or
   23: *
   24: *        Q'* C  if SIDE = 'L' and TRANS = 'C', or
   25: *
   26: *        C * Q  if SIDE = 'R' and TRANS = 'N', or
   27: *
   28: *        C * Q' if SIDE = 'R' and TRANS = 'C',
   29: *
   30: *  where Q is a complex unitary matrix defined as the product of k
   31: *  elementary reflectors
   32: *
   33: *        Q = H(k)' . . . H(2)' H(1)'
   34: *
   35: *  as returned by ZGELQF. Q is of order m if SIDE = 'L' and of order n
   36: *  if SIDE = 'R'.
   37: *
   38: *  Arguments
   39: *  =========
   40: *
   41: *  SIDE    (input) CHARACTER*1
   42: *          = 'L': apply Q or Q' from the Left
   43: *          = 'R': apply Q or Q' from the Right
   44: *
   45: *  TRANS   (input) CHARACTER*1
   46: *          = 'N': apply Q  (No transpose)
   47: *          = 'C': apply Q' (Conjugate transpose)
   48: *
   49: *  M       (input) INTEGER
   50: *          The number of rows of the matrix C. M >= 0.
   51: *
   52: *  N       (input) INTEGER
   53: *          The number of columns of the matrix C. N >= 0.
   54: *
   55: *  K       (input) INTEGER
   56: *          The number of elementary reflectors whose product defines
   57: *          the matrix Q.
   58: *          If SIDE = 'L', M >= K >= 0;
   59: *          if SIDE = 'R', N >= K >= 0.
   60: *
   61: *  A       (input) COMPLEX*16 array, dimension
   62: *                               (LDA,M) if SIDE = 'L',
   63: *                               (LDA,N) if SIDE = 'R'
   64: *          The i-th row must contain the vector which defines the
   65: *          elementary reflector H(i), for i = 1,2,...,k, as returned by
   66: *          ZGELQF in the first k rows of its array argument A.
   67: *          A is modified by the routine but restored on exit.
   68: *
   69: *  LDA     (input) INTEGER
   70: *          The leading dimension of the array A. LDA >= max(1,K).
   71: *
   72: *  TAU     (input) COMPLEX*16 array, dimension (K)
   73: *          TAU(i) must contain the scalar factor of the elementary
   74: *          reflector H(i), as returned by ZGELQF.
   75: *
   76: *  C       (input/output) COMPLEX*16 array, dimension (LDC,N)
   77: *          On entry, the m-by-n matrix C.
   78: *          On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
   79: *
   80: *  LDC     (input) INTEGER
   81: *          The leading dimension of the array C. LDC >= max(1,M).
   82: *
   83: *  WORK    (workspace) COMPLEX*16 array, dimension
   84: *                                   (N) if SIDE = 'L',
   85: *                                   (M) if SIDE = 'R'
   86: *
   87: *  INFO    (output) INTEGER
   88: *          = 0: successful exit
   89: *          < 0: if INFO = -i, the i-th argument had an illegal value
   90: *
   91: *  =====================================================================
   92: *
   93: *     .. Parameters ..
   94:       COMPLEX*16         ONE
   95:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
   96: *     ..
   97: *     .. Local Scalars ..
   98:       LOGICAL            LEFT, NOTRAN
   99:       INTEGER            I, I1, I2, I3, IC, JC, MI, NI, NQ
  100:       COMPLEX*16         AII, TAUI
  101: *     ..
  102: *     .. External Functions ..
  103:       LOGICAL            LSAME
  104:       EXTERNAL           LSAME
  105: *     ..
  106: *     .. External Subroutines ..
  107:       EXTERNAL           XERBLA, ZLACGV, ZLARF
  108: *     ..
  109: *     .. Intrinsic Functions ..
  110:       INTRINSIC          DCONJG, MAX
  111: *     ..
  112: *     .. Executable Statements ..
  113: *
  114: *     Test the input arguments
  115: *
  116:       INFO = 0
  117:       LEFT = LSAME( SIDE, 'L' )
  118:       NOTRAN = LSAME( TRANS, 'N' )
  119: *
  120: *     NQ is the order of Q
  121: *
  122:       IF( LEFT ) THEN
  123:          NQ = M
  124:       ELSE
  125:          NQ = N
  126:       END IF
  127:       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  128:          INFO = -1
  129:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  130:          INFO = -2
  131:       ELSE IF( M.LT.0 ) THEN
  132:          INFO = -3
  133:       ELSE IF( N.LT.0 ) THEN
  134:          INFO = -4
  135:       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
  136:          INFO = -5
  137:       ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  138:          INFO = -7
  139:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  140:          INFO = -10
  141:       END IF
  142:       IF( INFO.NE.0 ) THEN
  143:          CALL XERBLA( 'ZUNML2', -INFO )
  144:          RETURN
  145:       END IF
  146: *
  147: *     Quick return if possible
  148: *
  149:       IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
  150:      $   RETURN
  151: *
  152:       IF( ( LEFT .AND. NOTRAN .OR. .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
  153:          I1 = 1
  154:          I2 = K
  155:          I3 = 1
  156:       ELSE
  157:          I1 = K
  158:          I2 = 1
  159:          I3 = -1
  160:       END IF
  161: *
  162:       IF( LEFT ) THEN
  163:          NI = N
  164:          JC = 1
  165:       ELSE
  166:          MI = M
  167:          IC = 1
  168:       END IF
  169: *
  170:       DO 10 I = I1, I2, I3
  171:          IF( LEFT ) THEN
  172: *
  173: *           H(i) or H(i)' is applied to C(i:m,1:n)
  174: *
  175:             MI = M - I + 1
  176:             IC = I
  177:          ELSE
  178: *
  179: *           H(i) or H(i)' is applied to C(1:m,i:n)
  180: *
  181:             NI = N - I + 1
  182:             JC = I
  183:          END IF
  184: *
  185: *        Apply H(i) or H(i)'
  186: *
  187:          IF( NOTRAN ) THEN
  188:             TAUI = DCONJG( TAU( I ) )
  189:          ELSE
  190:             TAUI = TAU( I )
  191:          END IF
  192:          IF( I.LT.NQ )
  193:      $      CALL ZLACGV( NQ-I, A( I, I+1 ), LDA )
  194:          AII = A( I, I )
  195:          A( I, I ) = ONE
  196:          CALL ZLARF( SIDE, MI, NI, A( I, I ), LDA, TAUI, C( IC, JC ),
  197:      $               LDC, WORK )
  198:          A( I, I ) = AII
  199:          IF( I.LT.NQ )
  200:      $      CALL ZLACGV( NQ-I, A( I, I+1 ), LDA )
  201:    10 CONTINUE
  202:       RETURN
  203: *
  204: *     End of ZUNML2
  205: *
  206:       END

CVSweb interface <joel.bertrand@systella.fr>