Annotation of rpl/lapack/lapack/zunmbr.f, revision 1.5

1.1       bertrand    1:       SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
                      2:      $                   LDC, WORK, LWORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          SIDE, TRANS, VECT
                     11:       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C
                     21: *  with
                     22: *                  SIDE = 'L'     SIDE = 'R'
                     23: *  TRANS = 'N':      Q * C          C * Q
                     24: *  TRANS = 'C':      Q**H * C       C * Q**H
                     25: *
                     26: *  If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C
                     27: *  with
                     28: *                  SIDE = 'L'     SIDE = 'R'
                     29: *  TRANS = 'N':      P * C          C * P
                     30: *  TRANS = 'C':      P**H * C       C * P**H
                     31: *
                     32: *  Here Q and P**H are the unitary matrices determined by ZGEBRD when
                     33: *  reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q
                     34: *  and P**H are defined as products of elementary reflectors H(i) and
                     35: *  G(i) respectively.
                     36: *
                     37: *  Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
                     38: *  order of the unitary matrix Q or P**H that is applied.
                     39: *
                     40: *  If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
                     41: *  if nq >= k, Q = H(1) H(2) . . . H(k);
                     42: *  if nq < k, Q = H(1) H(2) . . . H(nq-1).
                     43: *
                     44: *  If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
                     45: *  if k < nq, P = G(1) G(2) . . . G(k);
                     46: *  if k >= nq, P = G(1) G(2) . . . G(nq-1).
                     47: *
                     48: *  Arguments
                     49: *  =========
                     50: *
                     51: *  VECT    (input) CHARACTER*1
                     52: *          = 'Q': apply Q or Q**H;
                     53: *          = 'P': apply P or P**H.
                     54: *
                     55: *  SIDE    (input) CHARACTER*1
                     56: *          = 'L': apply Q, Q**H, P or P**H from the Left;
                     57: *          = 'R': apply Q, Q**H, P or P**H from the Right.
                     58: *
                     59: *  TRANS   (input) CHARACTER*1
                     60: *          = 'N':  No transpose, apply Q or P;
                     61: *          = 'C':  Conjugate transpose, apply Q**H or P**H.
                     62: *
                     63: *  M       (input) INTEGER
                     64: *          The number of rows of the matrix C. M >= 0.
                     65: *
                     66: *  N       (input) INTEGER
                     67: *          The number of columns of the matrix C. N >= 0.
                     68: *
                     69: *  K       (input) INTEGER
                     70: *          If VECT = 'Q', the number of columns in the original
                     71: *          matrix reduced by ZGEBRD.
                     72: *          If VECT = 'P', the number of rows in the original
                     73: *          matrix reduced by ZGEBRD.
                     74: *          K >= 0.
                     75: *
                     76: *  A       (input) COMPLEX*16 array, dimension
                     77: *                                (LDA,min(nq,K)) if VECT = 'Q'
                     78: *                                (LDA,nq)        if VECT = 'P'
                     79: *          The vectors which define the elementary reflectors H(i) and
                     80: *          G(i), whose products determine the matrices Q and P, as
                     81: *          returned by ZGEBRD.
                     82: *
                     83: *  LDA     (input) INTEGER
                     84: *          The leading dimension of the array A.
                     85: *          If VECT = 'Q', LDA >= max(1,nq);
                     86: *          if VECT = 'P', LDA >= max(1,min(nq,K)).
                     87: *
                     88: *  TAU     (input) COMPLEX*16 array, dimension (min(nq,K))
                     89: *          TAU(i) must contain the scalar factor of the elementary
                     90: *          reflector H(i) or G(i) which determines Q or P, as returned
                     91: *          by ZGEBRD in the array argument TAUQ or TAUP.
                     92: *
                     93: *  C       (input/output) COMPLEX*16 array, dimension (LDC,N)
                     94: *          On entry, the M-by-N matrix C.
                     95: *          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q
                     96: *          or P*C or P**H*C or C*P or C*P**H.
                     97: *
                     98: *  LDC     (input) INTEGER
                     99: *          The leading dimension of the array C. LDC >= max(1,M).
                    100: *
                    101: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    102: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    103: *
                    104: *  LWORK   (input) INTEGER
                    105: *          The dimension of the array WORK.
                    106: *          If SIDE = 'L', LWORK >= max(1,N);
                    107: *          if SIDE = 'R', LWORK >= max(1,M);
                    108: *          if N = 0 or M = 0, LWORK >= 1.
                    109: *          For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',
                    110: *          and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the
                    111: *          optimal blocksize. (NB = 0 if M = 0 or N = 0.)
                    112: *
                    113: *          If LWORK = -1, then a workspace query is assumed; the routine
                    114: *          only calculates the optimal size of the WORK array, returns
                    115: *          this value as the first entry of the WORK array, and no error
                    116: *          message related to LWORK is issued by XERBLA.
                    117: *
                    118: *  INFO    (output) INTEGER
                    119: *          = 0:  successful exit
                    120: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    121: *
                    122: *  =====================================================================
                    123: *
                    124: *     .. Local Scalars ..
                    125:       LOGICAL            APPLYQ, LEFT, LQUERY, NOTRAN
                    126:       CHARACTER          TRANST
                    127:       INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
                    128: *     ..
                    129: *     .. External Functions ..
                    130:       LOGICAL            LSAME
                    131:       INTEGER            ILAENV
                    132:       EXTERNAL           LSAME, ILAENV
                    133: *     ..
                    134: *     .. External Subroutines ..
                    135:       EXTERNAL           XERBLA, ZUNMLQ, ZUNMQR
                    136: *     ..
                    137: *     .. Intrinsic Functions ..
                    138:       INTRINSIC          MAX, MIN
                    139: *     ..
                    140: *     .. Executable Statements ..
                    141: *
                    142: *     Test the input arguments
                    143: *
                    144:       INFO = 0
                    145:       APPLYQ = LSAME( VECT, 'Q' )
                    146:       LEFT = LSAME( SIDE, 'L' )
                    147:       NOTRAN = LSAME( TRANS, 'N' )
                    148:       LQUERY = ( LWORK.EQ.-1 )
                    149: *
                    150: *     NQ is the order of Q or P and NW is the minimum dimension of WORK
                    151: *
                    152:       IF( LEFT ) THEN
                    153:          NQ = M
                    154:          NW = N
                    155:       ELSE
                    156:          NQ = N
                    157:          NW = M
                    158:       END IF
                    159:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
                    160:          NW = 0
                    161:       END IF
                    162:       IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
                    163:          INFO = -1
                    164:       ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
                    165:          INFO = -2
                    166:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
                    167:          INFO = -3
                    168:       ELSE IF( M.LT.0 ) THEN
                    169:          INFO = -4
                    170:       ELSE IF( N.LT.0 ) THEN
                    171:          INFO = -5
                    172:       ELSE IF( K.LT.0 ) THEN
                    173:          INFO = -6
                    174:       ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR.
                    175:      $         ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) )
                    176:      $          THEN
                    177:          INFO = -8
                    178:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
                    179:          INFO = -11
                    180:       ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
                    181:          INFO = -13
                    182:       END IF
                    183: *
                    184:       IF( INFO.EQ.0 ) THEN
                    185:          IF( NW.GT.0 ) THEN
                    186:             IF( APPLYQ ) THEN
                    187:                IF( LEFT ) THEN
                    188:                   NB = ILAENV( 1, 'ZUNMQR', SIDE // TRANS, M-1, N, M-1,
                    189:      $                 -1 )
                    190:                ELSE
                    191:                   NB = ILAENV( 1, 'ZUNMQR', SIDE // TRANS, M, N-1, N-1,
                    192:      $                 -1 )
                    193:                END IF
                    194:             ELSE
                    195:                IF( LEFT ) THEN
                    196:                   NB = ILAENV( 1, 'ZUNMLQ', SIDE // TRANS, M-1, N, M-1,
                    197:      $                 -1 )
                    198:                ELSE
                    199:                   NB = ILAENV( 1, 'ZUNMLQ', SIDE // TRANS, M, N-1, N-1,
                    200:      $                 -1 )
                    201:                END IF
                    202:             END IF
                    203:             LWKOPT = MAX( 1, NW*NB )
                    204:          ELSE
                    205:             LWKOPT = 1
                    206:          END IF
                    207:          WORK( 1 ) = LWKOPT
                    208:       END IF
                    209: *
                    210:       IF( INFO.NE.0 ) THEN
                    211:          CALL XERBLA( 'ZUNMBR', -INFO )
                    212:          RETURN
                    213:       ELSE IF( LQUERY ) THEN
                    214:          RETURN
                    215:       END IF
                    216: *
                    217: *     Quick return if possible
                    218: *
                    219:       IF( M.EQ.0 .OR. N.EQ.0 )
                    220:      $   RETURN
                    221: *
                    222:       IF( APPLYQ ) THEN
                    223: *
                    224: *        Apply Q
                    225: *
                    226:          IF( NQ.GE.K ) THEN
                    227: *
                    228: *           Q was determined by a call to ZGEBRD with nq >= k
                    229: *
                    230:             CALL ZUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
                    231:      $                   WORK, LWORK, IINFO )
                    232:          ELSE IF( NQ.GT.1 ) THEN
                    233: *
                    234: *           Q was determined by a call to ZGEBRD with nq < k
                    235: *
                    236:             IF( LEFT ) THEN
                    237:                MI = M - 1
                    238:                NI = N
                    239:                I1 = 2
                    240:                I2 = 1
                    241:             ELSE
                    242:                MI = M
                    243:                NI = N - 1
                    244:                I1 = 1
                    245:                I2 = 2
                    246:             END IF
                    247:             CALL ZUNMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
                    248:      $                   C( I1, I2 ), LDC, WORK, LWORK, IINFO )
                    249:          END IF
                    250:       ELSE
                    251: *
                    252: *        Apply P
                    253: *
                    254:          IF( NOTRAN ) THEN
                    255:             TRANST = 'C'
                    256:          ELSE
                    257:             TRANST = 'N'
                    258:          END IF
                    259:          IF( NQ.GT.K ) THEN
                    260: *
                    261: *           P was determined by a call to ZGEBRD with nq > k
                    262: *
                    263:             CALL ZUNMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
                    264:      $                   WORK, LWORK, IINFO )
                    265:          ELSE IF( NQ.GT.1 ) THEN
                    266: *
                    267: *           P was determined by a call to ZGEBRD with nq <= k
                    268: *
                    269:             IF( LEFT ) THEN
                    270:                MI = M - 1
                    271:                NI = N
                    272:                I1 = 2
                    273:                I2 = 1
                    274:             ELSE
                    275:                MI = M
                    276:                NI = N - 1
                    277:                I1 = 1
                    278:                I2 = 2
                    279:             END IF
                    280:             CALL ZUNMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA,
                    281:      $                   TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
                    282:          END IF
                    283:       END IF
                    284:       WORK( 1 ) = LWKOPT
                    285:       RETURN
                    286: *
                    287: *     End of ZUNMBR
                    288: *
                    289:       END

CVSweb interface <joel.bertrand@systella.fr>