Diff for /rpl/lapack/lapack/zunmbr.f between versions 1.7 and 1.17

version 1.7, 2010/12/21 13:53:58 version 1.17, 2023/08/07 08:39:44
Line 1 Line 1
   *> \brief \b ZUNMBR
   *
   *  =========== DOCUMENTATION ===========
   *
   * Online html documentation available at
   *            http://www.netlib.org/lapack/explore-html/
   *
   *> \htmlonly
   *> Download ZUNMBR + dependencies
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmbr.f">
   *> [TGZ]</a>
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmbr.f">
   *> [ZIP]</a>
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmbr.f">
   *> [TXT]</a>
   *> \endhtmlonly
   *
   *  Definition:
   *  ===========
   *
   *       SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
   *                          LDC, WORK, LWORK, INFO )
   *
   *       .. Scalar Arguments ..
   *       CHARACTER          SIDE, TRANS, VECT
   *       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
   *       ..
   *       .. Array Arguments ..
   *       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
   *       ..
   *
   *
   *> \par Purpose:
   *  =============
   *>
   *> \verbatim
   *>
   *> If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C
   *> with
   *>                 SIDE = 'L'     SIDE = 'R'
   *> TRANS = 'N':      Q * C          C * Q
   *> TRANS = 'C':      Q**H * C       C * Q**H
   *>
   *> If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C
   *> with
   *>                 SIDE = 'L'     SIDE = 'R'
   *> TRANS = 'N':      P * C          C * P
   *> TRANS = 'C':      P**H * C       C * P**H
   *>
   *> Here Q and P**H are the unitary matrices determined by ZGEBRD when
   *> reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q
   *> and P**H are defined as products of elementary reflectors H(i) and
   *> G(i) respectively.
   *>
   *> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
   *> order of the unitary matrix Q or P**H that is applied.
   *>
   *> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
   *> if nq >= k, Q = H(1) H(2) . . . H(k);
   *> if nq < k, Q = H(1) H(2) . . . H(nq-1).
   *>
   *> If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
   *> if k < nq, P = G(1) G(2) . . . G(k);
   *> if k >= nq, P = G(1) G(2) . . . G(nq-1).
   *> \endverbatim
   *
   *  Arguments:
   *  ==========
   *
   *> \param[in] VECT
   *> \verbatim
   *>          VECT is CHARACTER*1
   *>          = 'Q': apply Q or Q**H;
   *>          = 'P': apply P or P**H.
   *> \endverbatim
   *>
   *> \param[in] SIDE
   *> \verbatim
   *>          SIDE is CHARACTER*1
   *>          = 'L': apply Q, Q**H, P or P**H from the Left;
   *>          = 'R': apply Q, Q**H, P or P**H from the Right.
   *> \endverbatim
   *>
   *> \param[in] TRANS
   *> \verbatim
   *>          TRANS is CHARACTER*1
   *>          = 'N':  No transpose, apply Q or P;
   *>          = 'C':  Conjugate transpose, apply Q**H or P**H.
   *> \endverbatim
   *>
   *> \param[in] M
   *> \verbatim
   *>          M is INTEGER
   *>          The number of rows of the matrix C. M >= 0.
   *> \endverbatim
   *>
   *> \param[in] N
   *> \verbatim
   *>          N is INTEGER
   *>          The number of columns of the matrix C. N >= 0.
   *> \endverbatim
   *>
   *> \param[in] K
   *> \verbatim
   *>          K is INTEGER
   *>          If VECT = 'Q', the number of columns in the original
   *>          matrix reduced by ZGEBRD.
   *>          If VECT = 'P', the number of rows in the original
   *>          matrix reduced by ZGEBRD.
   *>          K >= 0.
   *> \endverbatim
   *>
   *> \param[in] A
   *> \verbatim
   *>          A is COMPLEX*16 array, dimension
   *>                                (LDA,min(nq,K)) if VECT = 'Q'
   *>                                (LDA,nq)        if VECT = 'P'
   *>          The vectors which define the elementary reflectors H(i) and
   *>          G(i), whose products determine the matrices Q and P, as
   *>          returned by ZGEBRD.
   *> \endverbatim
   *>
   *> \param[in] LDA
   *> \verbatim
   *>          LDA is INTEGER
   *>          The leading dimension of the array A.
   *>          If VECT = 'Q', LDA >= max(1,nq);
   *>          if VECT = 'P', LDA >= max(1,min(nq,K)).
   *> \endverbatim
   *>
   *> \param[in] TAU
   *> \verbatim
   *>          TAU is COMPLEX*16 array, dimension (min(nq,K))
   *>          TAU(i) must contain the scalar factor of the elementary
   *>          reflector H(i) or G(i) which determines Q or P, as returned
   *>          by ZGEBRD in the array argument TAUQ or TAUP.
   *> \endverbatim
   *>
   *> \param[in,out] C
   *> \verbatim
   *>          C is COMPLEX*16 array, dimension (LDC,N)
   *>          On entry, the M-by-N matrix C.
   *>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q
   *>          or P*C or P**H*C or C*P or C*P**H.
   *> \endverbatim
   *>
   *> \param[in] LDC
   *> \verbatim
   *>          LDC is INTEGER
   *>          The leading dimension of the array C. LDC >= max(1,M).
   *> \endverbatim
   *>
   *> \param[out] WORK
   *> \verbatim
   *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
   *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   *> \endverbatim
   *>
   *> \param[in] LWORK
   *> \verbatim
   *>          LWORK is INTEGER
   *>          The dimension of the array WORK.
   *>          If SIDE = 'L', LWORK >= max(1,N);
   *>          if SIDE = 'R', LWORK >= max(1,M);
   *>          if N = 0 or M = 0, LWORK >= 1.
   *>          For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',
   *>          and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the
   *>          optimal blocksize. (NB = 0 if M = 0 or N = 0.)
   *>
   *>          If LWORK = -1, then a workspace query is assumed; the routine
   *>          only calculates the optimal size of the WORK array, returns
   *>          this value as the first entry of the WORK array, and no error
   *>          message related to LWORK is issued by XERBLA.
   *> \endverbatim
   *>
   *> \param[out] INFO
   *> \verbatim
   *>          INFO is INTEGER
   *>          = 0:  successful exit
   *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   *> \endverbatim
   *
   *  Authors:
   *  ========
   *
   *> \author Univ. of Tennessee
   *> \author Univ. of California Berkeley
   *> \author Univ. of Colorado Denver
   *> \author NAG Ltd.
   *
   *> \ingroup complex16OTHERcomputational
   *
   *  =====================================================================
       SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,        SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
      $                   LDC, WORK, LWORK, INFO )       $                   LDC, WORK, LWORK, INFO )
 *  *
 *  -- LAPACK routine (version 3.2) --  *  -- LAPACK computational routine --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *     November 2006  
 *  *
 *     .. Scalar Arguments ..  *     .. Scalar Arguments ..
       CHARACTER          SIDE, TRANS, VECT        CHARACTER          SIDE, TRANS, VECT
Line 14 Line 206
       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )        COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
 *     ..  *     ..
 *  *
 *  Purpose  
 *  =======  
 *  
 *  If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C  
 *  with  
 *                  SIDE = 'L'     SIDE = 'R'  
 *  TRANS = 'N':      Q * C          C * Q  
 *  TRANS = 'C':      Q**H * C       C * Q**H  
 *  
 *  If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C  
 *  with  
 *                  SIDE = 'L'     SIDE = 'R'  
 *  TRANS = 'N':      P * C          C * P  
 *  TRANS = 'C':      P**H * C       C * P**H  
 *  
 *  Here Q and P**H are the unitary matrices determined by ZGEBRD when  
 *  reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q  
 *  and P**H are defined as products of elementary reflectors H(i) and  
 *  G(i) respectively.  
 *  
 *  Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the  
 *  order of the unitary matrix Q or P**H that is applied.  
 *  
 *  If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:  
 *  if nq >= k, Q = H(1) H(2) . . . H(k);  
 *  if nq < k, Q = H(1) H(2) . . . H(nq-1).  
 *  
 *  If VECT = 'P', A is assumed to have been a K-by-NQ matrix:  
 *  if k < nq, P = G(1) G(2) . . . G(k);  
 *  if k >= nq, P = G(1) G(2) . . . G(nq-1).  
 *  
 *  Arguments  
 *  =========  
 *  
 *  VECT    (input) CHARACTER*1  
 *          = 'Q': apply Q or Q**H;  
 *          = 'P': apply P or P**H.  
 *  
 *  SIDE    (input) CHARACTER*1  
 *          = 'L': apply Q, Q**H, P or P**H from the Left;  
 *          = 'R': apply Q, Q**H, P or P**H from the Right.  
 *  
 *  TRANS   (input) CHARACTER*1  
 *          = 'N':  No transpose, apply Q or P;  
 *          = 'C':  Conjugate transpose, apply Q**H or P**H.  
 *  
 *  M       (input) INTEGER  
 *          The number of rows of the matrix C. M >= 0.  
 *  
 *  N       (input) INTEGER  
 *          The number of columns of the matrix C. N >= 0.  
 *  
 *  K       (input) INTEGER  
 *          If VECT = 'Q', the number of columns in the original  
 *          matrix reduced by ZGEBRD.  
 *          If VECT = 'P', the number of rows in the original  
 *          matrix reduced by ZGEBRD.  
 *          K >= 0.  
 *  
 *  A       (input) COMPLEX*16 array, dimension  
 *                                (LDA,min(nq,K)) if VECT = 'Q'  
 *                                (LDA,nq)        if VECT = 'P'  
 *          The vectors which define the elementary reflectors H(i) and  
 *          G(i), whose products determine the matrices Q and P, as  
 *          returned by ZGEBRD.  
 *  
 *  LDA     (input) INTEGER  
 *          The leading dimension of the array A.  
 *          If VECT = 'Q', LDA >= max(1,nq);  
 *          if VECT = 'P', LDA >= max(1,min(nq,K)).  
 *  
 *  TAU     (input) COMPLEX*16 array, dimension (min(nq,K))  
 *          TAU(i) must contain the scalar factor of the elementary  
 *          reflector H(i) or G(i) which determines Q or P, as returned  
 *          by ZGEBRD in the array argument TAUQ or TAUP.  
 *  
 *  C       (input/output) COMPLEX*16 array, dimension (LDC,N)  
 *          On entry, the M-by-N matrix C.  
 *          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q  
 *          or P*C or P**H*C or C*P or C*P**H.  
 *  
 *  LDC     (input) INTEGER  
 *          The leading dimension of the array C. LDC >= max(1,M).  
 *  
 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))  
 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.  
 *  
 *  LWORK   (input) INTEGER  
 *          The dimension of the array WORK.  
 *          If SIDE = 'L', LWORK >= max(1,N);  
 *          if SIDE = 'R', LWORK >= max(1,M);  
 *          if N = 0 or M = 0, LWORK >= 1.  
 *          For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',  
 *          and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the  
 *          optimal blocksize. (NB = 0 if M = 0 or N = 0.)  
 *  
 *          If LWORK = -1, then a workspace query is assumed; the routine  
 *          only calculates the optimal size of the WORK array, returns  
 *          this value as the first entry of the WORK array, and no error  
 *          message related to LWORK is issued by XERBLA.  
 *  
 *  INFO    (output) INTEGER  
 *          = 0:  successful exit  
 *          < 0:  if INFO = -i, the i-th argument had an illegal value  
 *  
 *  =====================================================================  *  =====================================================================
 *  *
 *     .. Local Scalars ..  *     .. Local Scalars ..
Line 151 Line 238
 *  *
       IF( LEFT ) THEN        IF( LEFT ) THEN
          NQ = M           NQ = M
          NW = N           NW = MAX( 1, N )
       ELSE        ELSE
          NQ = N           NQ = N
          NW = M           NW = MAX( 1, M )
       END IF  
       IF( M.EQ.0 .OR. N.EQ.0 ) THEN  
          NW = 0  
       END IF        END IF
       IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN        IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
          INFO = -1           INFO = -1
Line 177 Line 261
          INFO = -8           INFO = -8
       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN        ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
          INFO = -11           INFO = -11
       ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN        ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
          INFO = -13           INFO = -13
       END IF        END IF
 *  *
       IF( INFO.EQ.0 ) THEN        IF( INFO.EQ.0 ) THEN
          IF( NW.GT.0 ) THEN           IF( M.GT.0 .AND. N.GT.0 ) THEN
             IF( APPLYQ ) THEN              IF( APPLYQ ) THEN
                IF( LEFT ) THEN                 IF( LEFT ) THEN
                   NB = ILAENV( 1, 'ZUNMQR', SIDE // TRANS, M-1, N, M-1,                    NB = ILAENV( 1, 'ZUNMQR', SIDE // TRANS, M-1, N, M-1,
Line 200 Line 284
      $                 -1 )       $                 -1 )
                END IF                 END IF
             END IF              END IF
             LWKOPT = MAX( 1, NW*NB )              LWKOPT = NW*NB
          ELSE           ELSE
             LWKOPT = 1              LWKOPT = 1
          END IF           END IF

Removed from v.1.7  
changed lines
  Added in v.1.17


CVSweb interface <joel.bertrand@systella.fr>