File:  [local] / rpl / lapack / lapack / zunm22.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:44 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZUNM22 multiplies a general matrix by a banded unitary matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZUNM22 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunm22.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunm22.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunm22.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *     SUBROUTINE ZUNM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
   22: *    $                   WORK, LWORK, INFO )
   23: *
   24: *     .. Scalar Arguments ..
   25: *     CHARACTER          SIDE, TRANS
   26: *     INTEGER            M, N, N1, N2, LDQ, LDC, LWORK, INFO
   27: *     ..
   28: *     .. Array Arguments ..
   29: *     COMPLEX*16            Q( LDQ, * ), C( LDC, * ), WORK( * )
   30: *     ..
   31: *
   32: *> \par Purpose
   33: *  ============
   34: *>
   35: *> \verbatim
   36: *>
   37: *>  ZUNM22 overwrites the general complex M-by-N matrix C with
   38: *>
   39: *>                  SIDE = 'L'     SIDE = 'R'
   40: *>  TRANS = 'N':      Q * C          C * Q
   41: *>  TRANS = 'C':      Q**H * C       C * Q**H
   42: *>
   43: *>  where Q is a complex unitary matrix of order NQ, with NQ = M if
   44: *>  SIDE = 'L' and NQ = N if SIDE = 'R'.
   45: *>  The unitary matrix Q processes a 2-by-2 block structure
   46: *>
   47: *>         [  Q11  Q12  ]
   48: *>     Q = [            ]
   49: *>         [  Q21  Q22  ],
   50: *>
   51: *>  where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an
   52: *>  N2-by-N2 upper triangular matrix.
   53: *> \endverbatim
   54: *
   55: *  Arguments:
   56: *  ==========
   57: *
   58: *> \param[in] SIDE
   59: *> \verbatim
   60: *>          SIDE is CHARACTER*1
   61: *>          = 'L': apply Q or Q**H from the Left;
   62: *>          = 'R': apply Q or Q**H from the Right.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] TRANS
   66: *> \verbatim
   67: *>          TRANS is CHARACTER*1
   68: *>          = 'N':  apply Q (No transpose);
   69: *>          = 'C':  apply Q**H (Conjugate transpose).
   70: *> \endverbatim
   71: *>
   72: *> \param[in] M
   73: *> \verbatim
   74: *>          M is INTEGER
   75: *>          The number of rows of the matrix C. M >= 0.
   76: *> \endverbatim
   77: *>
   78: *> \param[in] N
   79: *> \verbatim
   80: *>          N is INTEGER
   81: *>          The number of columns of the matrix C. N >= 0.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] N1
   85: *> \param[in] N2
   86: *> \verbatim
   87: *>          N1 is INTEGER
   88: *>          N2 is INTEGER
   89: *>          The dimension of Q12 and Q21, respectively. N1, N2 >= 0.
   90: *>          The following requirement must be satisfied:
   91: *>          N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] Q
   95: *> \verbatim
   96: *>          Q is COMPLEX*16 array, dimension
   97: *>                              (LDQ,M) if SIDE = 'L'
   98: *>                              (LDQ,N) if SIDE = 'R'
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LDQ
  102: *> \verbatim
  103: *>          LDQ is INTEGER
  104: *>          The leading dimension of the array Q.
  105: *>          LDQ >= max(1,M) if SIDE = 'L'; LDQ >= max(1,N) if SIDE = 'R'.
  106: *> \endverbatim
  107: *>
  108: *> \param[in,out] C
  109: *> \verbatim
  110: *>          C is COMPLEX*16 array, dimension (LDC,N)
  111: *>          On entry, the M-by-N matrix C.
  112: *>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDC
  116: *> \verbatim
  117: *>          LDC is INTEGER
  118: *>          The leading dimension of the array C. LDC >= max(1,M).
  119: *> \endverbatim
  120: *>
  121: *> \param[out] WORK
  122: *> \verbatim
  123: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  124: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] LWORK
  128: *> \verbatim
  129: *>          LWORK is INTEGER
  130: *>          The dimension of the array WORK.
  131: *>          If SIDE = 'L', LWORK >= max(1,N);
  132: *>          if SIDE = 'R', LWORK >= max(1,M).
  133: *>          For optimum performance LWORK >= M*N.
  134: *>
  135: *>          If LWORK = -1, then a workspace query is assumed; the routine
  136: *>          only calculates the optimal size of the WORK array, returns
  137: *>          this value as the first entry of the WORK array, and no error
  138: *>          message related to LWORK is issued by XERBLA.
  139: *> \endverbatim
  140: *>
  141: *> \param[out] INFO
  142: *> \verbatim
  143: *>          INFO is INTEGER
  144: *>          = 0:  successful exit
  145: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  146: *> \endverbatim
  147: *
  148: *
  149: *  Authors:
  150: *  ========
  151: *
  152: *> \author Univ. of Tennessee
  153: *> \author Univ. of California Berkeley
  154: *> \author Univ. of Colorado Denver
  155: *> \author NAG Ltd.
  156: *
  157: *> \ingroup complexOTHERcomputational
  158: *
  159: *  =====================================================================
  160:       SUBROUTINE ZUNM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
  161:      $                   WORK, LWORK, INFO )
  162: *
  163: *  -- LAPACK computational routine --
  164: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  165: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  166: *
  167:       IMPLICIT NONE
  168: *
  169: *     .. Scalar Arguments ..
  170:       CHARACTER          SIDE, TRANS
  171:       INTEGER            M, N, N1, N2, LDQ, LDC, LWORK, INFO
  172: *     ..
  173: *     .. Array Arguments ..
  174:       COMPLEX*16         Q( LDQ, * ), C( LDC, * ), WORK( * )
  175: *     ..
  176: *
  177: *  =====================================================================
  178: *
  179: *     .. Parameters ..
  180:       COMPLEX*16         ONE
  181:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  182: *
  183: *     .. Local Scalars ..
  184:       LOGICAL            LEFT, LQUERY, NOTRAN
  185:       INTEGER            I, LDWORK, LEN, LWKOPT, NB, NQ, NW
  186: *     ..
  187: *     .. External Functions ..
  188:       LOGICAL            LSAME
  189:       EXTERNAL           LSAME
  190: *     ..
  191: *     .. External Subroutines ..
  192:       EXTERNAL           ZGEMM, ZLACPY, ZTRMM, XERBLA
  193: *     ..
  194: *     .. Intrinsic Functions ..
  195:       INTRINSIC          DCMPLX, MAX, MIN
  196: *     ..
  197: *     .. Executable Statements ..
  198: *
  199: *     Test the input arguments
  200: *
  201:       INFO = 0
  202:       LEFT = LSAME( SIDE, 'L' )
  203:       NOTRAN = LSAME( TRANS, 'N' )
  204:       LQUERY = ( LWORK.EQ.-1 )
  205: *
  206: *     NQ is the order of Q;
  207: *     NW is the minimum dimension of WORK.
  208: *
  209:       IF( LEFT ) THEN
  210:          NQ = M
  211:       ELSE
  212:          NQ = N
  213:       END IF
  214:       NW = NQ
  215:       IF( N1.EQ.0 .OR. N2.EQ.0 ) NW = 1
  216:       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  217:          INFO = -1
  218:       ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'C' ) )
  219:      $          THEN
  220:          INFO = -2
  221:       ELSE IF( M.LT.0 ) THEN
  222:          INFO = -3
  223:       ELSE IF( N.LT.0 ) THEN
  224:          INFO = -4
  225:       ELSE IF( N1.LT.0 .OR. N1+N2.NE.NQ ) THEN
  226:          INFO = -5
  227:       ELSE IF( N2.LT.0 ) THEN
  228:          INFO = -6
  229:       ELSE IF( LDQ.LT.MAX( 1, NQ ) ) THEN
  230:          INFO = -8
  231:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  232:          INFO = -10
  233:       ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
  234:          INFO = -12
  235:       END IF
  236: *
  237:       IF( INFO.EQ.0 ) THEN
  238:          LWKOPT = M*N
  239:          WORK( 1 ) = DCMPLX( LWKOPT )
  240:       END IF
  241: *
  242:       IF( INFO.NE.0 ) THEN
  243:          CALL XERBLA( 'ZUNM22', -INFO )
  244:          RETURN
  245:       ELSE IF( LQUERY ) THEN
  246:          RETURN
  247:       END IF
  248: *
  249: *     Quick return if possible
  250: *
  251:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  252:          WORK( 1 ) = 1
  253:          RETURN
  254:       END IF
  255: *
  256: *     Degenerate cases (N1 = 0 or N2 = 0) are handled using ZTRMM.
  257: *
  258:       IF( N1.EQ.0 ) THEN
  259:          CALL ZTRMM( SIDE, 'Upper', TRANS, 'Non-Unit', M, N, ONE,
  260:      $               Q, LDQ, C, LDC )
  261:          WORK( 1 ) = ONE
  262:          RETURN
  263:       ELSE IF( N2.EQ.0 ) THEN
  264:          CALL ZTRMM( SIDE, 'Lower', TRANS, 'Non-Unit', M, N, ONE,
  265:      $               Q, LDQ, C, LDC )
  266:          WORK( 1 ) = ONE
  267:          RETURN
  268:       END IF
  269: *
  270: *     Compute the largest chunk size available from the workspace.
  271: *
  272:       NB = MAX( 1, MIN( LWORK, LWKOPT ) / NQ )
  273: *
  274:       IF( LEFT ) THEN
  275:          IF( NOTRAN ) THEN
  276:             DO I = 1, N, NB
  277:                LEN = MIN( NB, N-I+1 )
  278:                LDWORK = M
  279: *
  280: *              Multiply bottom part of C by Q12.
  281: *
  282:                CALL ZLACPY( 'All', N1, LEN, C( N2+1, I ), LDC, WORK,
  283:      $                      LDWORK )
  284:                CALL ZTRMM( 'Left', 'Lower', 'No Transpose', 'Non-Unit',
  285:      $                     N1, LEN, ONE, Q( 1, N2+1 ), LDQ, WORK,
  286:      $                     LDWORK )
  287: *
  288: *              Multiply top part of C by Q11.
  289: *
  290:                CALL ZGEMM( 'No Transpose', 'No Transpose', N1, LEN, N2,
  291:      $                     ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
  292:      $                     LDWORK )
  293: *
  294: *              Multiply top part of C by Q21.
  295: *
  296:                CALL ZLACPY( 'All', N2, LEN, C( 1, I ), LDC,
  297:      $                      WORK( N1+1 ), LDWORK )
  298:                CALL ZTRMM( 'Left', 'Upper', 'No Transpose', 'Non-Unit',
  299:      $                     N2, LEN, ONE, Q( N1+1, 1 ), LDQ,
  300:      $                     WORK( N1+1 ), LDWORK )
  301: *
  302: *              Multiply bottom part of C by Q22.
  303: *
  304:                CALL ZGEMM( 'No Transpose', 'No Transpose', N2, LEN, N1,
  305:      $                     ONE, Q( N1+1, N2+1 ), LDQ, C( N2+1, I ), LDC,
  306:      $                     ONE, WORK( N1+1 ), LDWORK )
  307: *
  308: *              Copy everything back.
  309: *
  310:                CALL ZLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
  311:      $                      LDC )
  312:             END DO
  313:          ELSE
  314:             DO I = 1, N, NB
  315:                LEN = MIN( NB, N-I+1 )
  316:                LDWORK = M
  317: *
  318: *              Multiply bottom part of C by Q21**H.
  319: *
  320:                CALL ZLACPY( 'All', N2, LEN, C( N1+1, I ), LDC, WORK,
  321:      $                      LDWORK )
  322:                CALL ZTRMM( 'Left', 'Upper', 'Conjugate', 'Non-Unit',
  323:      $                     N2, LEN, ONE, Q( N1+1, 1 ), LDQ, WORK,
  324:      $                     LDWORK )
  325: *
  326: *              Multiply top part of C by Q11**H.
  327: *
  328:                CALL ZGEMM( 'Conjugate', 'No Transpose', N2, LEN, N1,
  329:      $                     ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
  330:      $                     LDWORK )
  331: *
  332: *              Multiply top part of C by Q12**H.
  333: *
  334:                CALL ZLACPY( 'All', N1, LEN, C( 1, I ), LDC,
  335:      $                      WORK( N2+1 ), LDWORK )
  336:                CALL ZTRMM( 'Left', 'Lower', 'Conjugate', 'Non-Unit',
  337:      $                     N1, LEN, ONE, Q( 1, N2+1 ), LDQ,
  338:      $                     WORK( N2+1 ), LDWORK )
  339: *
  340: *              Multiply bottom part of C by Q22**H.
  341: *
  342:                CALL ZGEMM( 'Conjugate', 'No Transpose', N1, LEN, N2,
  343:      $                     ONE, Q( N1+1, N2+1 ), LDQ, C( N1+1, I ), LDC,
  344:      $                     ONE, WORK( N2+1 ), LDWORK )
  345: *
  346: *              Copy everything back.
  347: *
  348:                CALL ZLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
  349:      $                      LDC )
  350:             END DO
  351:          END IF
  352:       ELSE
  353:          IF( NOTRAN ) THEN
  354:             DO I = 1, M, NB
  355:                LEN = MIN( NB, M-I+1 )
  356:                LDWORK = LEN
  357: *
  358: *              Multiply right part of C by Q21.
  359: *
  360:                CALL ZLACPY( 'All', LEN, N2, C( I, N1+1 ), LDC, WORK,
  361:      $                      LDWORK )
  362:                CALL ZTRMM( 'Right', 'Upper', 'No Transpose', 'Non-Unit',
  363:      $                     LEN, N2, ONE, Q( N1+1, 1 ), LDQ, WORK,
  364:      $                     LDWORK )
  365: *
  366: *              Multiply left part of C by Q11.
  367: *
  368:                CALL ZGEMM( 'No Transpose', 'No Transpose', LEN, N2, N1,
  369:      $                     ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
  370:      $                     LDWORK )
  371: *
  372: *              Multiply left part of C by Q12.
  373: *
  374:                CALL ZLACPY( 'All', LEN, N1, C( I, 1 ), LDC,
  375:      $                      WORK( 1 + N2*LDWORK ), LDWORK )
  376:                CALL ZTRMM( 'Right', 'Lower', 'No Transpose', 'Non-Unit',
  377:      $                     LEN, N1, ONE, Q( 1, N2+1 ), LDQ,
  378:      $                     WORK( 1 + N2*LDWORK ), LDWORK )
  379: *
  380: *              Multiply right part of C by Q22.
  381: *
  382:                CALL ZGEMM( 'No Transpose', 'No Transpose', LEN, N1, N2,
  383:      $                     ONE, C( I, N1+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
  384:      $                     ONE, WORK( 1 + N2*LDWORK ), LDWORK )
  385: *
  386: *              Copy everything back.
  387: *
  388:                CALL ZLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
  389:      $                      LDC )
  390:             END DO
  391:          ELSE
  392:             DO I = 1, M, NB
  393:                LEN = MIN( NB, M-I+1 )
  394:                LDWORK = LEN
  395: *
  396: *              Multiply right part of C by Q12**H.
  397: *
  398:                CALL ZLACPY( 'All', LEN, N1, C( I, N2+1 ), LDC, WORK,
  399:      $                      LDWORK )
  400:                CALL ZTRMM( 'Right', 'Lower', 'Conjugate', 'Non-Unit',
  401:      $                     LEN, N1, ONE, Q( 1, N2+1 ), LDQ, WORK,
  402:      $                     LDWORK )
  403: *
  404: *              Multiply left part of C by Q11**H.
  405: *
  406:                CALL ZGEMM( 'No Transpose', 'Conjugate', LEN, N1, N2,
  407:      $                     ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
  408:      $                     LDWORK )
  409: *
  410: *              Multiply left part of C by Q21**H.
  411: *
  412:                CALL ZLACPY( 'All', LEN, N2, C( I, 1 ), LDC,
  413:      $                      WORK( 1 + N1*LDWORK ), LDWORK )
  414:                CALL ZTRMM( 'Right', 'Upper', 'Conjugate', 'Non-Unit',
  415:      $                     LEN, N2, ONE, Q( N1+1, 1 ), LDQ,
  416:      $                     WORK( 1 + N1*LDWORK ), LDWORK )
  417: *
  418: *              Multiply right part of C by Q22**H.
  419: *
  420:                CALL ZGEMM( 'No Transpose', 'Conjugate', LEN, N2, N1,
  421:      $                     ONE, C( I, N2+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
  422:      $                     ONE, WORK( 1 + N1*LDWORK ), LDWORK )
  423: *
  424: *              Copy everything back.
  425: *
  426:                CALL ZLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
  427:      $                      LDC )
  428:             END DO
  429:          END IF
  430:       END IF
  431: *
  432:       WORK( 1 ) = DCMPLX( LWKOPT )
  433:       RETURN
  434: *
  435: *     End of ZUNM22
  436: *
  437:       END

CVSweb interface <joel.bertrand@systella.fr>