File:  [local] / rpl / lapack / lapack / zunhr_col.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:44 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZUNHR_COL
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZUNHR_COL + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunhr_col.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunhr_col.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunhr_col.f">
   15: *> [TXT]</a
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER           INFO, LDA, LDT, M, N, NB
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       COMPLEX*16        A( LDA, * ), D( * ), T( LDT, * )
   28: *       ..
   29: *
   30: *> \par Purpose:
   31: *  =============
   32: *>
   33: *> \verbatim
   34: *>
   35: *>  ZUNHR_COL takes an M-by-N complex matrix Q_in with orthonormal columns
   36: *>  as input, stored in A, and performs Householder Reconstruction (HR),
   37: *>  i.e. reconstructs Householder vectors V(i) implicitly representing
   38: *>  another M-by-N matrix Q_out, with the property that Q_in = Q_out*S,
   39: *>  where S is an N-by-N diagonal matrix with diagonal entries
   40: *>  equal to +1 or -1. The Householder vectors (columns V(i) of V) are
   41: *>  stored in A on output, and the diagonal entries of S are stored in D.
   42: *>  Block reflectors are also returned in T
   43: *>  (same output format as ZGEQRT).
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] M
   50: *> \verbatim
   51: *>          M is INTEGER
   52: *>          The number of rows of the matrix A. M >= 0.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The number of columns of the matrix A. M >= N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] NB
   62: *> \verbatim
   63: *>          NB is INTEGER
   64: *>          The column block size to be used in the reconstruction
   65: *>          of Householder column vector blocks in the array A and
   66: *>          corresponding block reflectors in the array T. NB >= 1.
   67: *>          (Note that if NB > N, then N is used instead of NB
   68: *>          as the column block size.)
   69: *> \endverbatim
   70: *>
   71: *> \param[in,out] A
   72: *> \verbatim
   73: *>          A is COMPLEX*16 array, dimension (LDA,N)
   74: *>
   75: *>          On entry:
   76: *>
   77: *>             The array A contains an M-by-N orthonormal matrix Q_in,
   78: *>             i.e the columns of A are orthogonal unit vectors.
   79: *>
   80: *>          On exit:
   81: *>
   82: *>             The elements below the diagonal of A represent the unit
   83: *>             lower-trapezoidal matrix V of Householder column vectors
   84: *>             V(i). The unit diagonal entries of V are not stored
   85: *>             (same format as the output below the diagonal in A from
   86: *>             ZGEQRT). The matrix T and the matrix V stored on output
   87: *>             in A implicitly define Q_out.
   88: *>
   89: *>             The elements above the diagonal contain the factor U
   90: *>             of the "modified" LU-decomposition:
   91: *>                Q_in - ( S ) = V * U
   92: *>                       ( 0 )
   93: *>             where 0 is a (M-N)-by-(M-N) zero matrix.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LDA
   97: *> \verbatim
   98: *>          LDA is INTEGER
   99: *>          The leading dimension of the array A.  LDA >= max(1,M).
  100: *> \endverbatim
  101: *>
  102: *> \param[out] T
  103: *> \verbatim
  104: *>          T is COMPLEX*16 array,
  105: *>          dimension (LDT, N)
  106: *>
  107: *>          Let NOCB = Number_of_output_col_blocks
  108: *>                   = CEIL(N/NB)
  109: *>
  110: *>          On exit, T(1:NB, 1:N) contains NOCB upper-triangular
  111: *>          block reflectors used to define Q_out stored in compact
  112: *>          form as a sequence of upper-triangular NB-by-NB column
  113: *>          blocks (same format as the output T in ZGEQRT).
  114: *>          The matrix T and the matrix V stored on output in A
  115: *>          implicitly define Q_out. NOTE: The lower triangles
  116: *>          below the upper-triangular blocks will be filled with
  117: *>          zeros. See Further Details.
  118: *> \endverbatim
  119: *>
  120: *> \param[in] LDT
  121: *> \verbatim
  122: *>          LDT is INTEGER
  123: *>          The leading dimension of the array T.
  124: *>          LDT >= max(1,min(NB,N)).
  125: *> \endverbatim
  126: *>
  127: *> \param[out] D
  128: *> \verbatim
  129: *>          D is COMPLEX*16 array, dimension min(M,N).
  130: *>          The elements can be only plus or minus one.
  131: *>
  132: *>          D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where
  133: *>          1 <= i <= min(M,N), and Q_in_i is Q_in after performing
  134: *>          i-1 steps of “modified” Gaussian elimination.
  135: *>          See Further Details.
  136: *> \endverbatim
  137: *>
  138: *> \param[out] INFO
  139: *> \verbatim
  140: *>          INFO is INTEGER
  141: *>          = 0:  successful exit
  142: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  143: *> \endverbatim
  144: *>
  145: *> \par Further Details:
  146: *  =====================
  147: *>
  148: *> \verbatim
  149: *>
  150: *> The computed M-by-M unitary factor Q_out is defined implicitly as
  151: *> a product of unitary matrices Q_out(i). Each Q_out(i) is stored in
  152: *> the compact WY-representation format in the corresponding blocks of
  153: *> matrices V (stored in A) and T.
  154: *>
  155: *> The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
  156: *> matrix A contains the column vectors V(i) in NB-size column
  157: *> blocks VB(j). For example, VB(1) contains the columns
  158: *> V(1), V(2), ... V(NB). NOTE: The unit entries on
  159: *> the diagonal of Y are not stored in A.
  160: *>
  161: *> The number of column blocks is
  162: *>
  163: *>     NOCB = Number_of_output_col_blocks = CEIL(N/NB)
  164: *>
  165: *> where each block is of order NB except for the last block, which
  166: *> is of order LAST_NB = N - (NOCB-1)*NB.
  167: *>
  168: *> For example, if M=6,  N=5 and NB=2, the matrix V is
  169: *>
  170: *>
  171: *>     V = (    VB(1),   VB(2), VB(3) ) =
  172: *>
  173: *>       = (   1                      )
  174: *>         ( v21    1                 )
  175: *>         ( v31  v32    1            )
  176: *>         ( v41  v42  v43   1        )
  177: *>         ( v51  v52  v53  v54    1  )
  178: *>         ( v61  v62  v63  v54   v65 )
  179: *>
  180: *>
  181: *> For each of the column blocks VB(i), an upper-triangular block
  182: *> reflector TB(i) is computed. These blocks are stored as
  183: *> a sequence of upper-triangular column blocks in the NB-by-N
  184: *> matrix T. The size of each TB(i) block is NB-by-NB, except
  185: *> for the last block, whose size is LAST_NB-by-LAST_NB.
  186: *>
  187: *> For example, if M=6,  N=5 and NB=2, the matrix T is
  188: *>
  189: *>     T  = (    TB(1),    TB(2), TB(3) ) =
  190: *>
  191: *>        = ( t11  t12  t13  t14   t15  )
  192: *>          (      t22       t24        )
  193: *>
  194: *>
  195: *> The M-by-M factor Q_out is given as a product of NOCB
  196: *> unitary M-by-M matrices Q_out(i).
  197: *>
  198: *>     Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),
  199: *>
  200: *> where each matrix Q_out(i) is given by the WY-representation
  201: *> using corresponding blocks from the matrices V and T:
  202: *>
  203: *>     Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,
  204: *>
  205: *> where I is the identity matrix. Here is the formula with matrix
  206: *> dimensions:
  207: *>
  208: *>  Q(i){M-by-M} = I{M-by-M} -
  209: *>    VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},
  210: *>
  211: *> where INB = NB, except for the last block NOCB
  212: *> for which INB=LAST_NB.
  213: *>
  214: *> =====
  215: *> NOTE:
  216: *> =====
  217: *>
  218: *> If Q_in is the result of doing a QR factorization
  219: *> B = Q_in * R_in, then:
  220: *>
  221: *> B = (Q_out*S) * R_in = Q_out * (S * R_in) = Q_out * R_out.
  222: *>
  223: *> So if one wants to interpret Q_out as the result
  224: *> of the QR factorization of B, then the corresponding R_out
  225: *> should be equal to R_out = S * R_in, i.e. some rows of R_in
  226: *> should be multiplied by -1.
  227: *>
  228: *> For the details of the algorithm, see [1].
  229: *>
  230: *> [1] "Reconstructing Householder vectors from tall-skinny QR",
  231: *>     G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
  232: *>     E. Solomonik, J. Parallel Distrib. Comput.,
  233: *>     vol. 85, pp. 3-31, 2015.
  234: *> \endverbatim
  235: *>
  236: *  Authors:
  237: *  ========
  238: *
  239: *> \author Univ. of Tennessee
  240: *> \author Univ. of California Berkeley
  241: *> \author Univ. of Colorado Denver
  242: *> \author NAG Ltd.
  243: *
  244: *> \ingroup complex16OTHERcomputational
  245: *
  246: *> \par Contributors:
  247: *  ==================
  248: *>
  249: *> \verbatim
  250: *>
  251: *> November   2019, Igor Kozachenko,
  252: *>            Computer Science Division,
  253: *>            University of California, Berkeley
  254: *>
  255: *> \endverbatim
  256: *
  257: *  =====================================================================
  258:       SUBROUTINE ZUNHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
  259:       IMPLICIT NONE
  260: *
  261: *  -- LAPACK computational routine --
  262: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  263: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  264: *
  265: *     .. Scalar Arguments ..
  266:       INTEGER           INFO, LDA, LDT, M, N, NB
  267: *     ..
  268: *     .. Array Arguments ..
  269:       COMPLEX*16        A( LDA, * ), D( * ), T( LDT, * )
  270: *     ..
  271: *
  272: *  =====================================================================
  273: *
  274: *     .. Parameters ..
  275:       COMPLEX*16         CONE, CZERO
  276:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
  277:      $                     CZERO = ( 0.0D+0, 0.0D+0 ) )
  278: *     ..
  279: *     .. Local Scalars ..
  280:       INTEGER            I, IINFO, J, JB, JBTEMP1, JBTEMP2, JNB,
  281:      $                   NPLUSONE
  282: *     ..
  283: *     .. External Subroutines ..
  284:       EXTERNAL           ZCOPY, ZLAUNHR_COL_GETRFNP, ZSCAL, ZTRSM,
  285:      $                   XERBLA
  286: *     ..
  287: *     .. Intrinsic Functions ..
  288:       INTRINSIC          MAX, MIN
  289: *     ..
  290: *     .. Executable Statements ..
  291: *
  292: *     Test the input parameters
  293: *
  294:       INFO = 0
  295:       IF( M.LT.0 ) THEN
  296:          INFO = -1
  297:       ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
  298:          INFO = -2
  299:       ELSE IF( NB.LT.1 ) THEN
  300:          INFO = -3
  301:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  302:          INFO = -5
  303:       ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
  304:          INFO = -7
  305:       END IF
  306: *
  307: *     Handle error in the input parameters.
  308: *
  309:       IF( INFO.NE.0 ) THEN
  310:          CALL XERBLA( 'ZUNHR_COL', -INFO )
  311:          RETURN
  312:       END IF
  313: *
  314: *     Quick return if possible
  315: *
  316:       IF( MIN( M, N ).EQ.0 ) THEN
  317:          RETURN
  318:       END IF
  319: *
  320: *     On input, the M-by-N matrix A contains the unitary
  321: *     M-by-N matrix Q_in.
  322: *
  323: *     (1) Compute the unit lower-trapezoidal V (ones on the diagonal
  324: *     are not stored) by performing the "modified" LU-decomposition.
  325: *
  326: *     Q_in - ( S ) = V * U = ( V1 ) * U,
  327: *            ( 0 )           ( V2 )
  328: *
  329: *     where 0 is an (M-N)-by-N zero matrix.
  330: *
  331: *     (1-1) Factor V1 and U.
  332: 
  333:       CALL ZLAUNHR_COL_GETRFNP( N, N, A, LDA, D, IINFO )
  334: *
  335: *     (1-2) Solve for V2.
  336: *
  337:       IF( M.GT.N ) THEN
  338:          CALL ZTRSM( 'R', 'U', 'N', 'N', M-N, N, CONE, A, LDA,
  339:      $               A( N+1, 1 ), LDA )
  340:       END IF
  341: *
  342: *     (2) Reconstruct the block reflector T stored in T(1:NB, 1:N)
  343: *     as a sequence of upper-triangular blocks with NB-size column
  344: *     blocking.
  345: *
  346: *     Loop over the column blocks of size NB of the array A(1:M,1:N)
  347: *     and the array T(1:NB,1:N), JB is the column index of a column
  348: *     block, JNB is the column block size at each step JB.
  349: *
  350:       NPLUSONE = N + 1
  351:       DO JB = 1, N, NB
  352: *
  353: *        (2-0) Determine the column block size JNB.
  354: *
  355:          JNB = MIN( NPLUSONE-JB, NB )
  356: *
  357: *        (2-1) Copy the upper-triangular part of the current JNB-by-JNB
  358: *        diagonal block U(JB) (of the N-by-N matrix U) stored
  359: *        in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part
  360: *        of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1)
  361: *        column-by-column, total JNB*(JNB+1)/2 elements.
  362: *
  363:          JBTEMP1 = JB - 1
  364:          DO J = JB, JB+JNB-1
  365:             CALL ZCOPY( J-JBTEMP1, A( JB, J ), 1, T( 1, J ), 1 )
  366:          END DO
  367: *
  368: *        (2-2) Perform on the upper-triangular part of the current
  369: *        JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored
  370: *        in T(1:JNB,JB:JB+JNB-1) the following operation in place:
  371: *        (-1)*U(JB)*S(JB), i.e the result will be stored in the upper-
  372: *        triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication
  373: *        of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB
  374: *        diagonal block S(JB) of the N-by-N sign matrix S from the
  375: *        right means changing the sign of each J-th column of the block
  376: *        U(JB) according to the sign of the diagonal element of the block
  377: *        S(JB), i.e. S(J,J) that is stored in the array element D(J).
  378: *
  379:          DO J = JB, JB+JNB-1
  380:             IF( D( J ).EQ.CONE ) THEN
  381:                CALL ZSCAL( J-JBTEMP1, -CONE, T( 1, J ), 1 )
  382:             END IF
  383:          END DO
  384: *
  385: *        (2-3) Perform the triangular solve for the current block
  386: *        matrix X(JB):
  387: *
  388: *               X(JB) * (A(JB)**T) = B(JB), where:
  389: *
  390: *               A(JB)**T  is a JNB-by-JNB unit upper-triangular
  391: *                         coefficient block, and A(JB)=V1(JB), which
  392: *                         is a JNB-by-JNB unit lower-triangular block
  393: *                         stored in A(JB:JB+JNB-1,JB:JB+JNB-1).
  394: *                         The N-by-N matrix V1 is the upper part
  395: *                         of the M-by-N lower-trapezoidal matrix V
  396: *                         stored in A(1:M,1:N);
  397: *
  398: *               B(JB)     is a JNB-by-JNB  upper-triangular right-hand
  399: *                         side block, B(JB) = (-1)*U(JB)*S(JB), and
  400: *                         B(JB) is stored in T(1:JNB,JB:JB+JNB-1);
  401: *
  402: *               X(JB)     is a JNB-by-JNB upper-triangular solution
  403: *                         block, X(JB) is the upper-triangular block
  404: *                         reflector T(JB), and X(JB) is stored
  405: *                         in T(1:JNB,JB:JB+JNB-1).
  406: *
  407: *             In other words, we perform the triangular solve for the
  408: *             upper-triangular block T(JB):
  409: *
  410: *               T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB).
  411: *
  412: *             Even though the blocks X(JB) and B(JB) are upper-
  413: *             triangular, the routine ZTRSM will access all JNB**2
  414: *             elements of the square T(1:JNB,JB:JB+JNB-1). Therefore,
  415: *             we need to set to zero the elements of the block
  416: *             T(1:JNB,JB:JB+JNB-1) below the diagonal before the call
  417: *             to ZTRSM.
  418: *
  419: *        (2-3a) Set the elements to zero.
  420: *
  421:          JBTEMP2 = JB - 2
  422:          DO J = JB, JB+JNB-2
  423:             DO I = J-JBTEMP2, NB
  424:                T( I, J ) = CZERO
  425:             END DO
  426:          END DO
  427: *
  428: *        (2-3b) Perform the triangular solve.
  429: *
  430:          CALL ZTRSM( 'R', 'L', 'C', 'U', JNB, JNB, CONE,
  431:      $               A( JB, JB ), LDA, T( 1, JB ), LDT )
  432: *
  433:       END DO
  434: *
  435:       RETURN
  436: *
  437: *     End of ZUNHR_COL
  438: *
  439:       END

CVSweb interface <joel.bertrand@systella.fr>