Annotation of rpl/lapack/lapack/zungtsqr_row.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b ZUNGTSQR_ROW
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZUNGTSQR_ROW + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunrgtsqr_row.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunrgtsqr_row.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunrgtsqr_row.f">
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
        !            22: *      $                         LWORK, INFO )
        !            23: *       IMPLICIT NONE
        !            24: *
        !            25: *       .. Scalar Arguments ..
        !            26: *       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       COMPLEX*16        A( LDA, * ), T( LDT, * ), WORK( * )
        !            30: *       ..
        !            31: *
        !            32: *> \par Purpose:
        !            33: *  =============
        !            34: *>
        !            35: *> \verbatim
        !            36: *>
        !            37: *> ZUNGTSQR_ROW generates an M-by-N complex matrix Q_out with
        !            38: *> orthonormal columns from the output of ZLATSQR. These N orthonormal
        !            39: *> columns are the first N columns of a product of complex unitary
        !            40: *> matrices Q(k)_in of order M, which are returned by ZLATSQR in
        !            41: *> a special format.
        !            42: *>
        !            43: *>      Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
        !            44: *>
        !            45: *> The input matrices Q(k)_in are stored in row and column blocks in A.
        !            46: *> See the documentation of ZLATSQR for more details on the format of
        !            47: *> Q(k)_in, where each Q(k)_in is represented by block Householder
        !            48: *> transformations. This routine calls an auxiliary routine ZLARFB_GETT,
        !            49: *> where the computation is performed on each individual block. The
        !            50: *> algorithm first sweeps NB-sized column blocks from the right to left
        !            51: *> starting in the bottom row block and continues to the top row block
        !            52: *> (hence _ROW in the routine name). This sweep is in reverse order of
        !            53: *> the order in which ZLATSQR generates the output blocks.
        !            54: *> \endverbatim
        !            55: *
        !            56: *  Arguments:
        !            57: *  ==========
        !            58: *
        !            59: *> \param[in] M
        !            60: *> \verbatim
        !            61: *>          M is INTEGER
        !            62: *>          The number of rows of the matrix A.  M >= 0.
        !            63: *> \endverbatim
        !            64: *>
        !            65: *> \param[in] N
        !            66: *> \verbatim
        !            67: *>          N is INTEGER
        !            68: *>          The number of columns of the matrix A. M >= N >= 0.
        !            69: *> \endverbatim
        !            70: *>
        !            71: *> \param[in] MB
        !            72: *> \verbatim
        !            73: *>          MB is INTEGER
        !            74: *>          The row block size used by ZLATSQR to return
        !            75: *>          arrays A and T. MB > N.
        !            76: *>          (Note that if MB > M, then M is used instead of MB
        !            77: *>          as the row block size).
        !            78: *> \endverbatim
        !            79: *>
        !            80: *> \param[in] NB
        !            81: *> \verbatim
        !            82: *>          NB is INTEGER
        !            83: *>          The column block size used by ZLATSQR to return
        !            84: *>          arrays A and T. NB >= 1.
        !            85: *>          (Note that if NB > N, then N is used instead of NB
        !            86: *>          as the column block size).
        !            87: *> \endverbatim
        !            88: *>
        !            89: *> \param[in,out] A
        !            90: *> \verbatim
        !            91: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            92: *>
        !            93: *>          On entry:
        !            94: *>
        !            95: *>             The elements on and above the diagonal are not used as
        !            96: *>             input. The elements below the diagonal represent the unit
        !            97: *>             lower-trapezoidal blocked matrix V computed by ZLATSQR
        !            98: *>             that defines the input matrices Q_in(k) (ones on the
        !            99: *>             diagonal are not stored). See ZLATSQR for more details.
        !           100: *>
        !           101: *>          On exit:
        !           102: *>
        !           103: *>             The array A contains an M-by-N orthonormal matrix Q_out,
        !           104: *>             i.e the columns of A are orthogonal unit vectors.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[in] LDA
        !           108: *> \verbatim
        !           109: *>          LDA is INTEGER
        !           110: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[in] T
        !           114: *> \verbatim
        !           115: *>          T is COMPLEX*16 array,
        !           116: *>          dimension (LDT, N * NIRB)
        !           117: *>          where NIRB = Number_of_input_row_blocks
        !           118: *>                     = MAX( 1, CEIL((M-N)/(MB-N)) )
        !           119: *>          Let NICB = Number_of_input_col_blocks
        !           120: *>                   = CEIL(N/NB)
        !           121: *>
        !           122: *>          The upper-triangular block reflectors used to define the
        !           123: *>          input matrices Q_in(k), k=(1:NIRB*NICB). The block
        !           124: *>          reflectors are stored in compact form in NIRB block
        !           125: *>          reflector sequences. Each of the NIRB block reflector
        !           126: *>          sequences is stored in a larger NB-by-N column block of T
        !           127: *>          and consists of NICB smaller NB-by-NB upper-triangular
        !           128: *>          column blocks. See ZLATSQR for more details on the format
        !           129: *>          of T.
        !           130: *> \endverbatim
        !           131: *>
        !           132: *> \param[in] LDT
        !           133: *> \verbatim
        !           134: *>          LDT is INTEGER
        !           135: *>          The leading dimension of the array T.
        !           136: *>          LDT >= max(1,min(NB,N)).
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[out] WORK
        !           140: *> \verbatim
        !           141: *>          (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           142: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           143: *> \endverbatim
        !           144: *>
        !           145: *> \param[in] LWORK
        !           146: *> \verbatim
        !           147: *>          The dimension of the array WORK.
        !           148: *>          LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)),
        !           149: *>          where NBLOCAL=MIN(NB,N).
        !           150: *>          If LWORK = -1, then a workspace query is assumed.
        !           151: *>          The routine only calculates the optimal size of the WORK
        !           152: *>          array, returns this value as the first entry of the WORK
        !           153: *>          array, and no error message related to LWORK is issued
        !           154: *>          by XERBLA.
        !           155: *> \endverbatim
        !           156: *>
        !           157: *> \param[out] INFO
        !           158: *> \verbatim
        !           159: *>          INFO is INTEGER
        !           160: *>          = 0:  successful exit
        !           161: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           162: *> \endverbatim
        !           163: *>
        !           164: *  Authors:
        !           165: *  ========
        !           166: *
        !           167: *> \author Univ. of Tennessee
        !           168: *> \author Univ. of California Berkeley
        !           169: *> \author Univ. of Colorado Denver
        !           170: *> \author NAG Ltd.
        !           171: *
        !           172: *> \ingroup complex16OTHERcomputational
        !           173: *
        !           174: *> \par Contributors:
        !           175: *  ==================
        !           176: *>
        !           177: *> \verbatim
        !           178: *>
        !           179: *> November 2020, Igor Kozachenko,
        !           180: *>                Computer Science Division,
        !           181: *>                University of California, Berkeley
        !           182: *>
        !           183: *> \endverbatim
        !           184: *>
        !           185: *  =====================================================================
        !           186:       SUBROUTINE ZUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
        !           187:      $                         LWORK, INFO )
        !           188:       IMPLICIT NONE
        !           189: *
        !           190: *  -- LAPACK computational routine --
        !           191: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           192: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           193: *
        !           194: *     .. Scalar Arguments ..
        !           195:       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
        !           196: *     ..
        !           197: *     .. Array Arguments ..
        !           198:       COMPLEX*16        A( LDA, * ), T( LDT, * ), WORK( * )
        !           199: *     ..
        !           200: *
        !           201: *  =====================================================================
        !           202: *
        !           203: *     .. Parameters ..
        !           204:       COMPLEX*16         CONE, CZERO
        !           205:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
        !           206:      $                     CZERO = ( 0.0D+0, 0.0D+0 ) )
        !           207: *     ..
        !           208: *     .. Local Scalars ..
        !           209:       LOGICAL            LQUERY
        !           210:       INTEGER            NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM,
        !           211:      $                   LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB,
        !           212:      $                   KB, KB_LAST, KNB, MB1
        !           213: *     ..
        !           214: *     .. Local Arrays ..
        !           215:       COMPLEX*16         DUMMY( 1, 1 )
        !           216: *     ..
        !           217: *     .. External Subroutines ..
        !           218:       EXTERNAL           ZLARFB_GETT, ZLASET, XERBLA
        !           219: *     ..
        !           220: *     .. Intrinsic Functions ..
        !           221:       INTRINSIC          DCMPLX, MAX, MIN
        !           222: *     ..
        !           223: *     .. Executable Statements ..
        !           224: *
        !           225: *     Test the input parameters
        !           226: *
        !           227:       INFO = 0
        !           228:       LQUERY  = LWORK.EQ.-1
        !           229:       IF( M.LT.0 ) THEN
        !           230:          INFO = -1
        !           231:       ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
        !           232:          INFO = -2
        !           233:       ELSE IF( MB.LE.N ) THEN
        !           234:          INFO = -3
        !           235:       ELSE IF( NB.LT.1 ) THEN
        !           236:          INFO = -4
        !           237:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           238:          INFO = -6
        !           239:       ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
        !           240:          INFO = -8
        !           241:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
        !           242:          INFO = -10
        !           243:       END IF
        !           244: *
        !           245:       NBLOCAL = MIN( NB, N )
        !           246: *
        !           247: *     Determine the workspace size.
        !           248: *
        !           249:       IF( INFO.EQ.0 ) THEN
        !           250:          LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) )
        !           251:       END IF
        !           252: *
        !           253: *     Handle error in the input parameters and handle the workspace query.
        !           254: *
        !           255:       IF( INFO.NE.0 ) THEN
        !           256:          CALL XERBLA( 'ZUNGTSQR_ROW', -INFO )
        !           257:          RETURN
        !           258:       ELSE IF ( LQUERY ) THEN
        !           259:          WORK( 1 ) = DCMPLX( LWORKOPT )
        !           260:          RETURN
        !           261:       END IF
        !           262: *
        !           263: *     Quick return if possible
        !           264: *
        !           265:       IF( MIN( M, N ).EQ.0 ) THEN
        !           266:          WORK( 1 ) = DCMPLX( LWORKOPT )
        !           267:          RETURN
        !           268:       END IF
        !           269: *
        !           270: *     (0) Set the upper-triangular part of the matrix A to zero and
        !           271: *     its diagonal elements to one.
        !           272: *
        !           273:       CALL ZLASET('U', M, N, CZERO, CONE, A, LDA )
        !           274: *
        !           275: *     KB_LAST is the column index of the last column block reflector
        !           276: *     in the matrices T and V.
        !           277: *
        !           278:       KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1
        !           279: *
        !           280: *
        !           281: *     (1) Bottom-up loop over row blocks of A, except the top row block.
        !           282: *     NOTE: If MB>=M, then the loop is never executed.
        !           283: *
        !           284:       IF ( MB.LT.M ) THEN
        !           285: *
        !           286: *        MB2 is the row blocking size for the row blocks before the
        !           287: *        first top row block in the matrix A. IB is the row index for
        !           288: *        the row blocks in the matrix A before the first top row block.
        !           289: *        IB_BOTTOM is the row index for the last bottom row block
        !           290: *        in the matrix A. JB_T is the column index of the corresponding
        !           291: *        column block in the matrix T.
        !           292: *
        !           293: *        Initialize variables.
        !           294: *
        !           295: *        NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A
        !           296: *        including the first row block.
        !           297: *
        !           298:          MB2 = MB - N
        !           299:          M_PLUS_ONE = M + 1
        !           300:          ITMP = ( M - MB - 1 ) / MB2
        !           301:          IB_BOTTOM = ITMP * MB2 + MB + 1
        !           302:          NUM_ALL_ROW_BLOCKS = ITMP + 2
        !           303:          JB_T = NUM_ALL_ROW_BLOCKS * N + 1
        !           304: *
        !           305:          DO IB = IB_BOTTOM, MB+1, -MB2
        !           306: *
        !           307: *           Determine the block size IMB for the current row block
        !           308: *           in the matrix A.
        !           309: *
        !           310:             IMB = MIN( M_PLUS_ONE - IB, MB2 )
        !           311: *
        !           312: *           Determine the column index JB_T for the current column block
        !           313: *           in the matrix T.
        !           314: *
        !           315:             JB_T = JB_T - N
        !           316: *
        !           317: *           Apply column blocks of H in the row block from right to left.
        !           318: *
        !           319: *           KB is the column index of the current column block reflector
        !           320: *           in the matrices T and V.
        !           321: *
        !           322:             DO KB = KB_LAST, 1, -NBLOCAL
        !           323: *
        !           324: *              Determine the size of the current column block KNB in
        !           325: *              the matrices T and V.
        !           326: *
        !           327:                KNB = MIN( NBLOCAL, N - KB + 1 )
        !           328: *
        !           329:                CALL ZLARFB_GETT( 'I', IMB, N-KB+1, KNB,
        !           330:      $                     T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA,
        !           331:      $                     A( IB, KB ), LDA, WORK, KNB )
        !           332: *
        !           333:             END DO
        !           334: *
        !           335:          END DO
        !           336: *
        !           337:       END IF
        !           338: *
        !           339: *     (2) Top row block of A.
        !           340: *     NOTE: If MB>=M, then we have only one row block of A of size M
        !           341: *     and we work on the entire matrix A.
        !           342: *
        !           343:       MB1 = MIN( MB, M )
        !           344: *
        !           345: *     Apply column blocks of H in the top row block from right to left.
        !           346: *
        !           347: *     KB is the column index of the current block reflector in
        !           348: *     the matrices T and V.
        !           349: *
        !           350:       DO KB = KB_LAST, 1, -NBLOCAL
        !           351: *
        !           352: *        Determine the size of the current column block KNB in
        !           353: *        the matrices T and V.
        !           354: *
        !           355:          KNB = MIN( NBLOCAL, N - KB + 1 )
        !           356: *
        !           357:          IF( MB1-KB-KNB+1.EQ.0 ) THEN
        !           358: *
        !           359: *           In SLARFB_GETT parameters, when M=0, then the matrix B
        !           360: *           does not exist, hence we need to pass a dummy array
        !           361: *           reference DUMMY(1,1) to B with LDDUMMY=1.
        !           362: *
        !           363:             CALL ZLARFB_GETT( 'N', 0, N-KB+1, KNB,
        !           364:      $                        T( 1, KB ), LDT, A( KB, KB ), LDA,
        !           365:      $                        DUMMY( 1, 1 ), 1, WORK, KNB )
        !           366:          ELSE
        !           367:             CALL ZLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB,
        !           368:      $                        T( 1, KB ), LDT, A( KB, KB ), LDA,
        !           369:      $                        A( KB+KNB, KB), LDA, WORK, KNB )
        !           370: 
        !           371:          END IF
        !           372: *
        !           373:       END DO
        !           374: *
        !           375:       WORK( 1 ) = DCMPLX( LWORKOPT )
        !           376:       RETURN
        !           377: *
        !           378: *     End of ZUNGTSQR_ROW
        !           379: *
        !           380:       END

CVSweb interface <joel.bertrand@systella.fr>