Annotation of rpl/lapack/lapack/zungtsqr.f, revision 1.2

1.1       bertrand    1: *> \brief \b ZUNGTSQR
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZUNGTSQR + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuntsqr.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zungtsqr.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zungtsqr.f">
                     15: *> [TXT]</a>
1.2     ! bertrand   16: *> \endhtmlonly
        !            17: *
1.1       bertrand   18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZUNGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
                     22: *      $                     INFO )
                     23: *
                     24: *       .. Scalar Arguments ..
                     25: *       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       COMPLEX*16        A( LDA, * ), T( LDT, * ), WORK( * )
                     29: *       ..
                     30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> ZUNGTSQR generates an M-by-N complex matrix Q_out with orthonormal
                     37: *> columns, which are the first N columns of a product of comlpex unitary
                     38: *> matrices of order M which are returned by ZLATSQR
                     39: *>
                     40: *>      Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
                     41: *>
                     42: *> See the documentation for ZLATSQR.
                     43: *> \endverbatim
                     44: *
                     45: *  Arguments:
                     46: *  ==========
                     47: *
                     48: *> \param[in] M
                     49: *> \verbatim
                     50: *>          M is INTEGER
                     51: *>          The number of rows of the matrix A.  M >= 0.
                     52: *> \endverbatim
                     53: *>
                     54: *> \param[in] N
                     55: *> \verbatim
                     56: *>          N is INTEGER
                     57: *>          The number of columns of the matrix A. M >= N >= 0.
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] MB
                     61: *> \verbatim
                     62: *>          MB is INTEGER
1.2     ! bertrand   63: *>          The row block size used by ZLATSQR to return
1.1       bertrand   64: *>          arrays A and T. MB > N.
                     65: *>          (Note that if MB > M, then M is used instead of MB
                     66: *>          as the row block size).
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] NB
                     70: *> \verbatim
                     71: *>          NB is INTEGER
                     72: *>          The column block size used by ZLATSQR to return
                     73: *>          arrays A and T. NB >= 1.
                     74: *>          (Note that if NB > N, then N is used instead of NB
                     75: *>          as the column block size).
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in,out] A
                     79: *> \verbatim
                     80: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     81: *>
                     82: *>          On entry:
                     83: *>
                     84: *>             The elements on and above the diagonal are not accessed.
                     85: *>             The elements below the diagonal represent the unit
                     86: *>             lower-trapezoidal blocked matrix V computed by ZLATSQR
                     87: *>             that defines the input matrices Q_in(k) (ones on the
                     88: *>             diagonal are not stored) (same format as the output A
                     89: *>             below the diagonal in ZLATSQR).
                     90: *>
                     91: *>          On exit:
                     92: *>
                     93: *>             The array A contains an M-by-N orthonormal matrix Q_out,
                     94: *>             i.e the columns of A are orthogonal unit vectors.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] LDA
                     98: *> \verbatim
                     99: *>          LDA is INTEGER
                    100: *>          The leading dimension of the array A.  LDA >= max(1,M).
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] T
                    104: *> \verbatim
                    105: *>          T is COMPLEX*16 array,
                    106: *>          dimension (LDT, N * NIRB)
                    107: *>          where NIRB = Number_of_input_row_blocks
                    108: *>                     = MAX( 1, CEIL((M-N)/(MB-N)) )
                    109: *>          Let NICB = Number_of_input_col_blocks
                    110: *>                   = CEIL(N/NB)
                    111: *>
                    112: *>          The upper-triangular block reflectors used to define the
                    113: *>          input matrices Q_in(k), k=(1:NIRB*NICB). The block
                    114: *>          reflectors are stored in compact form in NIRB block
                    115: *>          reflector sequences. Each of NIRB block reflector sequences
                    116: *>          is stored in a larger NB-by-N column block of T and consists
                    117: *>          of NICB smaller NB-by-NB upper-triangular column blocks.
                    118: *>          (same format as the output T in ZLATSQR).
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] LDT
                    122: *> \verbatim
                    123: *>          LDT is INTEGER
                    124: *>          The leading dimension of the array T.
                    125: *>          LDT >= max(1,min(NB1,N)).
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[out] WORK
                    129: *> \verbatim
                    130: *>          (workspace) COMPLEX*16 array, dimension (MAX(2,LWORK))
                    131: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] LWORK
                    135: *> \verbatim
                    136: *>          The dimension of the array WORK.  LWORK >= (M+NB)*N.
                    137: *>          If LWORK = -1, then a workspace query is assumed.
                    138: *>          The routine only calculates the optimal size of the WORK
                    139: *>          array, returns this value as the first entry of the WORK
                    140: *>          array, and no error message related to LWORK is issued
                    141: *>          by XERBLA.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[out] INFO
                    145: *> \verbatim
                    146: *>          INFO is INTEGER
                    147: *>          = 0:  successful exit
                    148: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    149: *> \endverbatim
                    150: *>
                    151: *  Authors:
                    152: *  ========
                    153: *
                    154: *> \author Univ. of Tennessee
                    155: *> \author Univ. of California Berkeley
                    156: *> \author Univ. of Colorado Denver
                    157: *> \author NAG Ltd.
                    158: *
1.2     ! bertrand  159: *> \ingroup complex16OTHERcomputational
1.1       bertrand  160: *
                    161: *> \par Contributors:
                    162: *  ==================
                    163: *>
                    164: *> \verbatim
                    165: *>
                    166: *> November 2019, Igor Kozachenko,
                    167: *>                Computer Science Division,
                    168: *>                University of California, Berkeley
                    169: *>
                    170: *> \endverbatim
                    171: *
                    172: *  =====================================================================
                    173:       SUBROUTINE ZUNGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
                    174:      $                     INFO )
                    175:       IMPLICIT NONE
                    176: *
1.2     ! bertrand  177: *  -- LAPACK computational routine --
1.1       bertrand  178: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    179: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    180: *
                    181: *     .. Scalar Arguments ..
                    182:       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
                    183: *     ..
                    184: *     .. Array Arguments ..
                    185:       COMPLEX*16        A( LDA, * ), T( LDT, * ), WORK( * )
                    186: *     ..
                    187: *
                    188: *  =====================================================================
                    189: *
                    190: *     .. Parameters ..
                    191:       COMPLEX*16         CONE, CZERO
                    192:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
                    193:      $                     CZERO = ( 0.0D+0, 0.0D+0 ) )
                    194: *     ..
                    195: *     .. Local Scalars ..
                    196:       LOGICAL            LQUERY
                    197:       INTEGER            IINFO, LDC, LWORKOPT, LC, LW, NBLOCAL, J
                    198: *     ..
                    199: *     .. External Subroutines ..
                    200:       EXTERNAL           ZCOPY, ZLAMTSQR, ZLASET, XERBLA
                    201: *     ..
                    202: *     .. Intrinsic Functions ..
                    203:       INTRINSIC          DCMPLX, MAX, MIN
                    204: *     ..
                    205: *     .. Executable Statements ..
                    206: *
                    207: *     Test the input parameters
                    208: *
                    209:       LQUERY  = LWORK.EQ.-1
                    210:       INFO = 0
                    211:       IF( M.LT.0 ) THEN
                    212:          INFO = -1
                    213:       ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
                    214:          INFO = -2
                    215:       ELSE IF( MB.LE.N ) THEN
                    216:          INFO = -3
                    217:       ELSE IF( NB.LT.1 ) THEN
                    218:          INFO = -4
                    219:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    220:          INFO = -6
                    221:       ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
                    222:          INFO = -8
                    223:       ELSE
                    224: *
                    225: *        Test the input LWORK for the dimension of the array WORK.
                    226: *        This workspace is used to store array C(LDC, N) and WORK(LWORK)
                    227: *        in the call to ZLAMTSQR. See the documentation for ZLAMTSQR.
                    228: *
                    229:          IF( LWORK.LT.2 .AND. (.NOT.LQUERY) ) THEN
                    230:             INFO = -10
                    231:          ELSE
                    232: *
                    233: *           Set block size for column blocks
                    234: *
                    235:             NBLOCAL = MIN( NB, N )
                    236: *
                    237: *           LWORK = -1, then set the size for the array C(LDC,N)
                    238: *           in ZLAMTSQR call and set the optimal size of the work array
                    239: *           WORK(LWORK) in ZLAMTSQR call.
                    240: *
                    241:             LDC = M
                    242:             LC = LDC*N
                    243:             LW = N * NBLOCAL
                    244: *
                    245:             LWORKOPT = LC+LW
                    246: *
                    247:             IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
                    248:                INFO = -10
                    249:             END IF
                    250:          END IF
                    251: *
                    252:       END IF
                    253: *
                    254: *     Handle error in the input parameters and return workspace query.
                    255: *
                    256:       IF( INFO.NE.0 ) THEN
                    257:          CALL XERBLA( 'ZUNGTSQR', -INFO )
                    258:          RETURN
                    259:       ELSE IF ( LQUERY ) THEN
                    260:          WORK( 1 ) = DCMPLX( LWORKOPT )
                    261:          RETURN
                    262:       END IF
                    263: *
                    264: *     Quick return if possible
                    265: *
                    266:       IF( MIN( M, N ).EQ.0 ) THEN
                    267:          WORK( 1 ) = DCMPLX( LWORKOPT )
                    268:          RETURN
                    269:       END IF
                    270: *
                    271: *     (1) Form explicitly the tall-skinny M-by-N left submatrix Q1_in
                    272: *     of M-by-M orthogonal matrix Q_in, which is implicitly stored in
                    273: *     the subdiagonal part of input array A and in the input array T.
                    274: *     Perform by the following operation using the routine ZLAMTSQR.
                    275: *
                    276: *         Q1_in = Q_in * ( I ), where I is a N-by-N identity matrix,
                    277: *                        ( 0 )        0 is a (M-N)-by-N zero matrix.
                    278: *
                    279: *     (1a) Form M-by-N matrix in the array WORK(1:LDC*N) with ones
                    280: *     on the diagonal and zeros elsewhere.
                    281: *
                    282:       CALL ZLASET( 'F', M, N, CZERO, CONE, WORK, LDC )
                    283: *
                    284: *     (1b)  On input, WORK(1:LDC*N) stores ( I );
                    285: *                                          ( 0 )
                    286: *
                    287: *           On output, WORK(1:LDC*N) stores Q1_in.
                    288: *
                    289:       CALL ZLAMTSQR( 'L', 'N', M, N, N, MB, NBLOCAL, A, LDA, T, LDT,
                    290:      $               WORK, LDC, WORK( LC+1 ), LW, IINFO )
                    291: *
                    292: *     (2) Copy the result from the part of the work array (1:M,1:N)
                    293: *     with the leading dimension LDC that starts at WORK(1) into
                    294: *     the output array A(1:M,1:N) column-by-column.
                    295: *
                    296:       DO J = 1, N
                    297:          CALL ZCOPY( M, WORK( (J-1)*LDC + 1 ), 1, A( 1, J ), 1 )
                    298:       END DO
                    299: *
                    300:       WORK( 1 ) = DCMPLX( LWORKOPT )
                    301:       RETURN
                    302: *
                    303: *     End of ZUNGTSQR
                    304: *
1.2     ! bertrand  305:       END

CVSweb interface <joel.bertrand@systella.fr>