File:  [local] / rpl / lapack / lapack / zungrq.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:44 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZUNGRQ
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZUNGRQ + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zungrq.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zungrq.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zungrq.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, K, LDA, LWORK, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
   28: *       ..
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> ZUNGRQ generates an M-by-N complex matrix Q with orthonormal rows,
   37: *> which is defined as the last M rows of a product of K elementary
   38: *> reflectors of order N
   39: *>
   40: *>       Q  =  H(1)**H H(2)**H . . . H(k)**H
   41: *>
   42: *> as returned by ZGERQF.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in] M
   49: *> \verbatim
   50: *>          M is INTEGER
   51: *>          The number of rows of the matrix Q. M >= 0.
   52: *> \endverbatim
   53: *>
   54: *> \param[in] N
   55: *> \verbatim
   56: *>          N is INTEGER
   57: *>          The number of columns of the matrix Q. N >= M.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] K
   61: *> \verbatim
   62: *>          K is INTEGER
   63: *>          The number of elementary reflectors whose product defines the
   64: *>          matrix Q. M >= K >= 0.
   65: *> \endverbatim
   66: *>
   67: *> \param[in,out] A
   68: *> \verbatim
   69: *>          A is COMPLEX*16 array, dimension (LDA,N)
   70: *>          On entry, the (m-k+i)-th row must contain the vector which
   71: *>          defines the elementary reflector H(i), for i = 1,2,...,k, as
   72: *>          returned by ZGERQF in the last k rows of its array argument
   73: *>          A.
   74: *>          On exit, the M-by-N matrix Q.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] LDA
   78: *> \verbatim
   79: *>          LDA is INTEGER
   80: *>          The first dimension of the array A. LDA >= max(1,M).
   81: *> \endverbatim
   82: *>
   83: *> \param[in] TAU
   84: *> \verbatim
   85: *>          TAU is COMPLEX*16 array, dimension (K)
   86: *>          TAU(i) must contain the scalar factor of the elementary
   87: *>          reflector H(i), as returned by ZGERQF.
   88: *> \endverbatim
   89: *>
   90: *> \param[out] WORK
   91: *> \verbatim
   92: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
   93: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LWORK
   97: *> \verbatim
   98: *>          LWORK is INTEGER
   99: *>          The dimension of the array WORK. LWORK >= max(1,M).
  100: *>          For optimum performance LWORK >= M*NB, where NB is the
  101: *>          optimal blocksize.
  102: *>
  103: *>          If LWORK = -1, then a workspace query is assumed; the routine
  104: *>          only calculates the optimal size of the WORK array, returns
  105: *>          this value as the first entry of the WORK array, and no error
  106: *>          message related to LWORK is issued by XERBLA.
  107: *> \endverbatim
  108: *>
  109: *> \param[out] INFO
  110: *> \verbatim
  111: *>          INFO is INTEGER
  112: *>          = 0:  successful exit
  113: *>          < 0:  if INFO = -i, the i-th argument has an illegal value
  114: *> \endverbatim
  115: *
  116: *  Authors:
  117: *  ========
  118: *
  119: *> \author Univ. of Tennessee
  120: *> \author Univ. of California Berkeley
  121: *> \author Univ. of Colorado Denver
  122: *> \author NAG Ltd.
  123: *
  124: *> \ingroup complex16OTHERcomputational
  125: *
  126: *  =====================================================================
  127:       SUBROUTINE ZUNGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
  128: *
  129: *  -- LAPACK computational routine --
  130: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  131: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  132: *
  133: *     .. Scalar Arguments ..
  134:       INTEGER            INFO, K, LDA, LWORK, M, N
  135: *     ..
  136: *     .. Array Arguments ..
  137:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
  138: *     ..
  139: *
  140: *  =====================================================================
  141: *
  142: *     .. Parameters ..
  143:       COMPLEX*16         ZERO
  144:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  145: *     ..
  146: *     .. Local Scalars ..
  147:       LOGICAL            LQUERY
  148:       INTEGER            I, IB, II, IINFO, IWS, J, KK, L, LDWORK,
  149:      $                   LWKOPT, NB, NBMIN, NX
  150: *     ..
  151: *     .. External Subroutines ..
  152:       EXTERNAL           XERBLA, ZLARFB, ZLARFT, ZUNGR2
  153: *     ..
  154: *     .. Intrinsic Functions ..
  155:       INTRINSIC          MAX, MIN
  156: *     ..
  157: *     .. External Functions ..
  158:       INTEGER            ILAENV
  159:       EXTERNAL           ILAENV
  160: *     ..
  161: *     .. Executable Statements ..
  162: *
  163: *     Test the input arguments
  164: *
  165:       INFO = 0
  166:       LQUERY = ( LWORK.EQ.-1 )
  167:       IF( M.LT.0 ) THEN
  168:          INFO = -1
  169:       ELSE IF( N.LT.M ) THEN
  170:          INFO = -2
  171:       ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
  172:          INFO = -3
  173:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  174:          INFO = -5
  175:       END IF
  176: *
  177:       IF( INFO.EQ.0 ) THEN
  178:          IF( M.LE.0 ) THEN
  179:             LWKOPT = 1
  180:          ELSE
  181:             NB = ILAENV( 1, 'ZUNGRQ', ' ', M, N, K, -1 )
  182:             LWKOPT = M*NB
  183:          END IF
  184:          WORK( 1 ) = LWKOPT
  185: *
  186:          IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
  187:             INFO = -8
  188:          END IF
  189:       END IF
  190: *
  191:       IF( INFO.NE.0 ) THEN
  192:          CALL XERBLA( 'ZUNGRQ', -INFO )
  193:          RETURN
  194:       ELSE IF( LQUERY ) THEN
  195:          RETURN
  196:       END IF
  197: *
  198: *     Quick return if possible
  199: *
  200:       IF( M.LE.0 ) THEN
  201:          RETURN
  202:       END IF
  203: *
  204:       NBMIN = 2
  205:       NX = 0
  206:       IWS = M
  207:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
  208: *
  209: *        Determine when to cross over from blocked to unblocked code.
  210: *
  211:          NX = MAX( 0, ILAENV( 3, 'ZUNGRQ', ' ', M, N, K, -1 ) )
  212:          IF( NX.LT.K ) THEN
  213: *
  214: *           Determine if workspace is large enough for blocked code.
  215: *
  216:             LDWORK = M
  217:             IWS = LDWORK*NB
  218:             IF( LWORK.LT.IWS ) THEN
  219: *
  220: *              Not enough workspace to use optimal NB:  reduce NB and
  221: *              determine the minimum value of NB.
  222: *
  223:                NB = LWORK / LDWORK
  224:                NBMIN = MAX( 2, ILAENV( 2, 'ZUNGRQ', ' ', M, N, K, -1 ) )
  225:             END IF
  226:          END IF
  227:       END IF
  228: *
  229:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
  230: *
  231: *        Use blocked code after the first block.
  232: *        The last kk rows are handled by the block method.
  233: *
  234:          KK = MIN( K, ( ( K-NX+NB-1 ) / NB )*NB )
  235: *
  236: *        Set A(1:m-kk,n-kk+1:n) to zero.
  237: *
  238:          DO 20 J = N - KK + 1, N
  239:             DO 10 I = 1, M - KK
  240:                A( I, J ) = ZERO
  241:    10       CONTINUE
  242:    20    CONTINUE
  243:       ELSE
  244:          KK = 0
  245:       END IF
  246: *
  247: *     Use unblocked code for the first or only block.
  248: *
  249:       CALL ZUNGR2( M-KK, N-KK, K-KK, A, LDA, TAU, WORK, IINFO )
  250: *
  251:       IF( KK.GT.0 ) THEN
  252: *
  253: *        Use blocked code
  254: *
  255:          DO 50 I = K - KK + 1, K, NB
  256:             IB = MIN( NB, K-I+1 )
  257:             II = M - K + I
  258:             IF( II.GT.1 ) THEN
  259: *
  260: *              Form the triangular factor of the block reflector
  261: *              H = H(i+ib-1) . . . H(i+1) H(i)
  262: *
  263:                CALL ZLARFT( 'Backward', 'Rowwise', N-K+I+IB-1, IB,
  264:      $                      A( II, 1 ), LDA, TAU( I ), WORK, LDWORK )
  265: *
  266: *              Apply H**H to A(1:m-k+i-1,1:n-k+i+ib-1) from the right
  267: *
  268:                CALL ZLARFB( 'Right', 'Conjugate transpose', 'Backward',
  269:      $                      'Rowwise', II-1, N-K+I+IB-1, IB, A( II, 1 ),
  270:      $                      LDA, WORK, LDWORK, A, LDA, WORK( IB+1 ),
  271:      $                      LDWORK )
  272:             END IF
  273: *
  274: *           Apply H**H to columns 1:n-k+i+ib-1 of current block
  275: *
  276:             CALL ZUNGR2( IB, N-K+I+IB-1, IB, A( II, 1 ), LDA, TAU( I ),
  277:      $                   WORK, IINFO )
  278: *
  279: *           Set columns n-k+i+ib:n of current block to zero
  280: *
  281:             DO 40 L = N - K + I + IB, N
  282:                DO 30 J = II, II + IB - 1
  283:                   A( J, L ) = ZERO
  284:    30          CONTINUE
  285:    40       CONTINUE
  286:    50    CONTINUE
  287:       END IF
  288: *
  289:       WORK( 1 ) = IWS
  290:       RETURN
  291: *
  292: *     End of ZUNGRQ
  293: *
  294:       END

CVSweb interface <joel.bertrand@systella.fr>