File:  [local] / rpl / lapack / lapack / zungbr.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:42 2012 UTC (11 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b ZUNGBR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZUNGBR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zungbr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zungbr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zungbr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          VECT
   25: *       INTEGER            INFO, K, LDA, LWORK, M, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZUNGBR generates one of the complex unitary matrices Q or P**H
   38: *> determined by ZGEBRD when reducing a complex matrix A to bidiagonal
   39: *> form: A = Q * B * P**H.  Q and P**H are defined as products of
   40: *> elementary reflectors H(i) or G(i) respectively.
   41: *>
   42: *> If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
   43: *> is of order M:
   44: *> if m >= k, Q = H(1) H(2) . . . H(k) and ZUNGBR returns the first n
   45: *> columns of Q, where m >= n >= k;
   46: *> if m < k, Q = H(1) H(2) . . . H(m-1) and ZUNGBR returns Q as an
   47: *> M-by-M matrix.
   48: *>
   49: *> If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H
   50: *> is of order N:
   51: *> if k < n, P**H = G(k) . . . G(2) G(1) and ZUNGBR returns the first m
   52: *> rows of P**H, where n >= m >= k;
   53: *> if k >= n, P**H = G(n-1) . . . G(2) G(1) and ZUNGBR returns P**H as
   54: *> an N-by-N matrix.
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] VECT
   61: *> \verbatim
   62: *>          VECT is CHARACTER*1
   63: *>          Specifies whether the matrix Q or the matrix P**H is
   64: *>          required, as defined in the transformation applied by ZGEBRD:
   65: *>          = 'Q':  generate Q;
   66: *>          = 'P':  generate P**H.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] M
   70: *> \verbatim
   71: *>          M is INTEGER
   72: *>          The number of rows of the matrix Q or P**H to be returned.
   73: *>          M >= 0.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>          The number of columns of the matrix Q or P**H to be returned.
   80: *>          N >= 0.
   81: *>          If VECT = 'Q', M >= N >= min(M,K);
   82: *>          if VECT = 'P', N >= M >= min(N,K).
   83: *> \endverbatim
   84: *>
   85: *> \param[in] K
   86: *> \verbatim
   87: *>          K is INTEGER
   88: *>          If VECT = 'Q', the number of columns in the original M-by-K
   89: *>          matrix reduced by ZGEBRD.
   90: *>          If VECT = 'P', the number of rows in the original K-by-N
   91: *>          matrix reduced by ZGEBRD.
   92: *>          K >= 0.
   93: *> \endverbatim
   94: *>
   95: *> \param[in,out] A
   96: *> \verbatim
   97: *>          A is COMPLEX*16 array, dimension (LDA,N)
   98: *>          On entry, the vectors which define the elementary reflectors,
   99: *>          as returned by ZGEBRD.
  100: *>          On exit, the M-by-N matrix Q or P**H.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>          The leading dimension of the array A. LDA >= M.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] TAU
  110: *> \verbatim
  111: *>          TAU is COMPLEX*16 array, dimension
  112: *>                                (min(M,K)) if VECT = 'Q'
  113: *>                                (min(N,K)) if VECT = 'P'
  114: *>          TAU(i) must contain the scalar factor of the elementary
  115: *>          reflector H(i) or G(i), which determines Q or P**H, as
  116: *>          returned by ZGEBRD in its array argument TAUQ or TAUP.
  117: *> \endverbatim
  118: *>
  119: *> \param[out] WORK
  120: *> \verbatim
  121: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  122: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LWORK
  126: *> \verbatim
  127: *>          LWORK is INTEGER
  128: *>          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
  129: *>          For optimum performance LWORK >= min(M,N)*NB, where NB
  130: *>          is the optimal blocksize.
  131: *>
  132: *>          If LWORK = -1, then a workspace query is assumed; the routine
  133: *>          only calculates the optimal size of the WORK array, returns
  134: *>          this value as the first entry of the WORK array, and no error
  135: *>          message related to LWORK is issued by XERBLA.
  136: *> \endverbatim
  137: *>
  138: *> \param[out] INFO
  139: *> \verbatim
  140: *>          INFO is INTEGER
  141: *>          = 0:  successful exit
  142: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  143: *> \endverbatim
  144: *
  145: *  Authors:
  146: *  ========
  147: *
  148: *> \author Univ. of Tennessee 
  149: *> \author Univ. of California Berkeley 
  150: *> \author Univ. of Colorado Denver 
  151: *> \author NAG Ltd. 
  152: *
  153: *> \date April 2012
  154: *
  155: *> \ingroup complex16GBcomputational
  156: *
  157: *  =====================================================================
  158:       SUBROUTINE ZUNGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
  159: *
  160: *  -- LAPACK computational routine (version 3.4.1) --
  161: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  162: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163: *     April 2012
  164: *
  165: *     .. Scalar Arguments ..
  166:       CHARACTER          VECT
  167:       INTEGER            INFO, K, LDA, LWORK, M, N
  168: *     ..
  169: *     .. Array Arguments ..
  170:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
  171: *     ..
  172: *
  173: *  =====================================================================
  174: *
  175: *     .. Parameters ..
  176:       COMPLEX*16         ZERO, ONE
  177:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
  178:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
  179: *     ..
  180: *     .. Local Scalars ..
  181:       LOGICAL            LQUERY, WANTQ
  182:       INTEGER            I, IINFO, J, LWKOPT, MN
  183: *     ..
  184: *     .. External Functions ..
  185:       LOGICAL            LSAME
  186:       INTEGER            ILAENV
  187:       EXTERNAL           LSAME, ILAENV
  188: *     ..
  189: *     .. External Subroutines ..
  190:       EXTERNAL           XERBLA, ZUNGLQ, ZUNGQR
  191: *     ..
  192: *     .. Intrinsic Functions ..
  193:       INTRINSIC          MAX, MIN
  194: *     ..
  195: *     .. Executable Statements ..
  196: *
  197: *     Test the input arguments
  198: *
  199:       INFO = 0
  200:       WANTQ = LSAME( VECT, 'Q' )
  201:       MN = MIN( M, N )
  202:       LQUERY = ( LWORK.EQ.-1 )
  203:       IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
  204:          INFO = -1
  205:       ELSE IF( M.LT.0 ) THEN
  206:          INFO = -2
  207:       ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
  208:      $         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
  209:      $         MIN( N, K ) ) ) ) THEN
  210:          INFO = -3
  211:       ELSE IF( K.LT.0 ) THEN
  212:          INFO = -4
  213:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  214:          INFO = -6
  215:       ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
  216:          INFO = -9
  217:       END IF
  218: *
  219:       IF( INFO.EQ.0 ) THEN
  220:          WORK( 1 ) = 1
  221:          IF( WANTQ ) THEN
  222:             IF( M.GE.K ) THEN
  223:                CALL ZUNGQR( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
  224:             ELSE
  225:                IF( M.GT.1 ) THEN
  226:                   CALL ZUNGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
  227:      $                         -1, IINFO )
  228:                END IF
  229:             END IF
  230:          ELSE
  231:             IF( K.LT.N ) THEN
  232:                CALL ZUNGLQ( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
  233:             ELSE
  234:                IF( N.GT.1 ) THEN
  235:                   CALL ZUNGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
  236:      $                         -1, IINFO )
  237:                END IF
  238:             END IF
  239:          END IF
  240:          LWKOPT = WORK( 1 )
  241:          LWKOPT = MAX (LWKOPT, MN)
  242:       END IF
  243: *
  244:       IF( INFO.NE.0 ) THEN
  245:          CALL XERBLA( 'ZUNGBR', -INFO )
  246:          RETURN
  247:       ELSE IF( LQUERY ) THEN
  248:          WORK( 1 ) = LWKOPT
  249:          RETURN
  250:       END IF
  251: *
  252: *     Quick return if possible
  253: *
  254:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  255:          WORK( 1 ) = 1
  256:          RETURN
  257:       END IF
  258: *
  259:       IF( WANTQ ) THEN
  260: *
  261: *        Form Q, determined by a call to ZGEBRD to reduce an m-by-k
  262: *        matrix
  263: *
  264:          IF( M.GE.K ) THEN
  265: *
  266: *           If m >= k, assume m >= n >= k
  267: *
  268:             CALL ZUNGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
  269: *
  270:          ELSE
  271: *
  272: *           If m < k, assume m = n
  273: *
  274: *           Shift the vectors which define the elementary reflectors one
  275: *           column to the right, and set the first row and column of Q
  276: *           to those of the unit matrix
  277: *
  278:             DO 20 J = M, 2, -1
  279:                A( 1, J ) = ZERO
  280:                DO 10 I = J + 1, M
  281:                   A( I, J ) = A( I, J-1 )
  282:    10          CONTINUE
  283:    20       CONTINUE
  284:             A( 1, 1 ) = ONE
  285:             DO 30 I = 2, M
  286:                A( I, 1 ) = ZERO
  287:    30       CONTINUE
  288:             IF( M.GT.1 ) THEN
  289: *
  290: *              Form Q(2:m,2:m)
  291: *
  292:                CALL ZUNGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
  293:      $                      LWORK, IINFO )
  294:             END IF
  295:          END IF
  296:       ELSE
  297: *
  298: *        Form P**H, determined by a call to ZGEBRD to reduce a k-by-n
  299: *        matrix
  300: *
  301:          IF( K.LT.N ) THEN
  302: *
  303: *           If k < n, assume k <= m <= n
  304: *
  305:             CALL ZUNGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
  306: *
  307:          ELSE
  308: *
  309: *           If k >= n, assume m = n
  310: *
  311: *           Shift the vectors which define the elementary reflectors one
  312: *           row downward, and set the first row and column of P**H to
  313: *           those of the unit matrix
  314: *
  315:             A( 1, 1 ) = ONE
  316:             DO 40 I = 2, N
  317:                A( I, 1 ) = ZERO
  318:    40       CONTINUE
  319:             DO 60 J = 2, N
  320:                DO 50 I = J - 1, 2, -1
  321:                   A( I, J ) = A( I-1, J )
  322:    50          CONTINUE
  323:                A( 1, J ) = ZERO
  324:    60       CONTINUE
  325:             IF( N.GT.1 ) THEN
  326: *
  327: *              Form P**H(2:n,2:n)
  328: *
  329:                CALL ZUNGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
  330:      $                      LWORK, IINFO )
  331:             END IF
  332:          END IF
  333:       END IF
  334:       WORK( 1 ) = LWKOPT
  335:       RETURN
  336: *
  337: *     End of ZUNGBR
  338: *
  339:       END

CVSweb interface <joel.bertrand@systella.fr>