Annotation of rpl/lapack/lapack/zungbr.f, revision 1.8

1.1       bertrand    1:       SUBROUTINE ZUNGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       CHARACTER          VECT
                     10:       INTEGER            INFO, K, LDA, LWORK, M, N
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                     14: *     ..
                     15: *
                     16: *  Purpose
                     17: *  =======
                     18: *
                     19: *  ZUNGBR generates one of the complex unitary matrices Q or P**H
                     20: *  determined by ZGEBRD when reducing a complex matrix A to bidiagonal
                     21: *  form: A = Q * B * P**H.  Q and P**H are defined as products of
                     22: *  elementary reflectors H(i) or G(i) respectively.
                     23: *
                     24: *  If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
                     25: *  is of order M:
                     26: *  if m >= k, Q = H(1) H(2) . . . H(k) and ZUNGBR returns the first n
                     27: *  columns of Q, where m >= n >= k;
                     28: *  if m < k, Q = H(1) H(2) . . . H(m-1) and ZUNGBR returns Q as an
                     29: *  M-by-M matrix.
                     30: *
                     31: *  If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H
                     32: *  is of order N:
                     33: *  if k < n, P**H = G(k) . . . G(2) G(1) and ZUNGBR returns the first m
                     34: *  rows of P**H, where n >= m >= k;
                     35: *  if k >= n, P**H = G(n-1) . . . G(2) G(1) and ZUNGBR returns P**H as
                     36: *  an N-by-N matrix.
                     37: *
                     38: *  Arguments
                     39: *  =========
                     40: *
                     41: *  VECT    (input) CHARACTER*1
                     42: *          Specifies whether the matrix Q or the matrix P**H is
                     43: *          required, as defined in the transformation applied by ZGEBRD:
                     44: *          = 'Q':  generate Q;
                     45: *          = 'P':  generate P**H.
                     46: *
                     47: *  M       (input) INTEGER
                     48: *          The number of rows of the matrix Q or P**H to be returned.
                     49: *          M >= 0.
                     50: *
                     51: *  N       (input) INTEGER
                     52: *          The number of columns of the matrix Q or P**H to be returned.
                     53: *          N >= 0.
                     54: *          If VECT = 'Q', M >= N >= min(M,K);
                     55: *          if VECT = 'P', N >= M >= min(N,K).
                     56: *
                     57: *  K       (input) INTEGER
                     58: *          If VECT = 'Q', the number of columns in the original M-by-K
                     59: *          matrix reduced by ZGEBRD.
                     60: *          If VECT = 'P', the number of rows in the original K-by-N
                     61: *          matrix reduced by ZGEBRD.
                     62: *          K >= 0.
                     63: *
                     64: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     65: *          On entry, the vectors which define the elementary reflectors,
                     66: *          as returned by ZGEBRD.
                     67: *          On exit, the M-by-N matrix Q or P**H.
                     68: *
                     69: *  LDA     (input) INTEGER
                     70: *          The leading dimension of the array A. LDA >= M.
                     71: *
                     72: *  TAU     (input) COMPLEX*16 array, dimension
                     73: *                                (min(M,K)) if VECT = 'Q'
                     74: *                                (min(N,K)) if VECT = 'P'
                     75: *          TAU(i) must contain the scalar factor of the elementary
                     76: *          reflector H(i) or G(i), which determines Q or P**H, as
                     77: *          returned by ZGEBRD in its array argument TAUQ or TAUP.
                     78: *
                     79: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     80: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     81: *
                     82: *  LWORK   (input) INTEGER
                     83: *          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
                     84: *          For optimum performance LWORK >= min(M,N)*NB, where NB
                     85: *          is the optimal blocksize.
                     86: *
                     87: *          If LWORK = -1, then a workspace query is assumed; the routine
                     88: *          only calculates the optimal size of the WORK array, returns
                     89: *          this value as the first entry of the WORK array, and no error
                     90: *          message related to LWORK is issued by XERBLA.
                     91: *
                     92: *  INFO    (output) INTEGER
                     93: *          = 0:  successful exit
                     94: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     95: *
                     96: *  =====================================================================
                     97: *
                     98: *     .. Parameters ..
                     99:       COMPLEX*16         ZERO, ONE
                    100:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
                    101:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
                    102: *     ..
                    103: *     .. Local Scalars ..
                    104:       LOGICAL            LQUERY, WANTQ
                    105:       INTEGER            I, IINFO, J, LWKOPT, MN, NB
                    106: *     ..
                    107: *     .. External Functions ..
                    108:       LOGICAL            LSAME
                    109:       INTEGER            ILAENV
                    110:       EXTERNAL           LSAME, ILAENV
                    111: *     ..
                    112: *     .. External Subroutines ..
                    113:       EXTERNAL           XERBLA, ZUNGLQ, ZUNGQR
                    114: *     ..
                    115: *     .. Intrinsic Functions ..
                    116:       INTRINSIC          MAX, MIN
                    117: *     ..
                    118: *     .. Executable Statements ..
                    119: *
                    120: *     Test the input arguments
                    121: *
                    122:       INFO = 0
                    123:       WANTQ = LSAME( VECT, 'Q' )
                    124:       MN = MIN( M, N )
                    125:       LQUERY = ( LWORK.EQ.-1 )
                    126:       IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
                    127:          INFO = -1
                    128:       ELSE IF( M.LT.0 ) THEN
                    129:          INFO = -2
                    130:       ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
                    131:      $         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
                    132:      $         MIN( N, K ) ) ) ) THEN
                    133:          INFO = -3
                    134:       ELSE IF( K.LT.0 ) THEN
                    135:          INFO = -4
                    136:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    137:          INFO = -6
                    138:       ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
                    139:          INFO = -9
                    140:       END IF
                    141: *
                    142:       IF( INFO.EQ.0 ) THEN
                    143:          IF( WANTQ ) THEN
                    144:             NB = ILAENV( 1, 'ZUNGQR', ' ', M, N, K, -1 )
                    145:          ELSE
                    146:             NB = ILAENV( 1, 'ZUNGLQ', ' ', M, N, K, -1 )
                    147:          END IF
                    148:          LWKOPT = MAX( 1, MN )*NB
                    149:          WORK( 1 ) = LWKOPT
                    150:       END IF
                    151: *
                    152:       IF( INFO.NE.0 ) THEN
                    153:          CALL XERBLA( 'ZUNGBR', -INFO )
                    154:          RETURN
                    155:       ELSE IF( LQUERY ) THEN
                    156:          RETURN
                    157:       END IF
                    158: *
                    159: *     Quick return if possible
                    160: *
                    161:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
                    162:          WORK( 1 ) = 1
                    163:          RETURN
                    164:       END IF
                    165: *
                    166:       IF( WANTQ ) THEN
                    167: *
                    168: *        Form Q, determined by a call to ZGEBRD to reduce an m-by-k
                    169: *        matrix
                    170: *
                    171:          IF( M.GE.K ) THEN
                    172: *
                    173: *           If m >= k, assume m >= n >= k
                    174: *
                    175:             CALL ZUNGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
                    176: *
                    177:          ELSE
                    178: *
                    179: *           If m < k, assume m = n
                    180: *
                    181: *           Shift the vectors which define the elementary reflectors one
                    182: *           column to the right, and set the first row and column of Q
                    183: *           to those of the unit matrix
                    184: *
                    185:             DO 20 J = M, 2, -1
                    186:                A( 1, J ) = ZERO
                    187:                DO 10 I = J + 1, M
                    188:                   A( I, J ) = A( I, J-1 )
                    189:    10          CONTINUE
                    190:    20       CONTINUE
                    191:             A( 1, 1 ) = ONE
                    192:             DO 30 I = 2, M
                    193:                A( I, 1 ) = ZERO
                    194:    30       CONTINUE
                    195:             IF( M.GT.1 ) THEN
                    196: *
                    197: *              Form Q(2:m,2:m)
                    198: *
                    199:                CALL ZUNGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
                    200:      $                      LWORK, IINFO )
                    201:             END IF
                    202:          END IF
                    203:       ELSE
                    204: *
1.8     ! bertrand  205: *        Form P**H, determined by a call to ZGEBRD to reduce a k-by-n
1.1       bertrand  206: *        matrix
                    207: *
                    208:          IF( K.LT.N ) THEN
                    209: *
                    210: *           If k < n, assume k <= m <= n
                    211: *
                    212:             CALL ZUNGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
                    213: *
                    214:          ELSE
                    215: *
                    216: *           If k >= n, assume m = n
                    217: *
                    218: *           Shift the vectors which define the elementary reflectors one
1.8     ! bertrand  219: *           row downward, and set the first row and column of P**H to
1.1       bertrand  220: *           those of the unit matrix
                    221: *
                    222:             A( 1, 1 ) = ONE
                    223:             DO 40 I = 2, N
                    224:                A( I, 1 ) = ZERO
                    225:    40       CONTINUE
                    226:             DO 60 J = 2, N
                    227:                DO 50 I = J - 1, 2, -1
                    228:                   A( I, J ) = A( I-1, J )
                    229:    50          CONTINUE
                    230:                A( 1, J ) = ZERO
                    231:    60       CONTINUE
                    232:             IF( N.GT.1 ) THEN
                    233: *
1.8     ! bertrand  234: *              Form P**H(2:n,2:n)
1.1       bertrand  235: *
                    236:                CALL ZUNGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
                    237:      $                      LWORK, IINFO )
                    238:             END IF
                    239:          END IF
                    240:       END IF
                    241:       WORK( 1 ) = LWKOPT
                    242:       RETURN
                    243: *
                    244: *     End of ZUNGBR
                    245: *
                    246:       END

CVSweb interface <joel.bertrand@systella.fr>