Annotation of rpl/lapack/lapack/zungbr.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZUNGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
        !             2: *
        !             3: *  -- LAPACK routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       CHARACTER          VECT
        !            10:       INTEGER            INFO, K, LDA, LWORK, M, N
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
        !            14: *     ..
        !            15: *
        !            16: *  Purpose
        !            17: *  =======
        !            18: *
        !            19: *  ZUNGBR generates one of the complex unitary matrices Q or P**H
        !            20: *  determined by ZGEBRD when reducing a complex matrix A to bidiagonal
        !            21: *  form: A = Q * B * P**H.  Q and P**H are defined as products of
        !            22: *  elementary reflectors H(i) or G(i) respectively.
        !            23: *
        !            24: *  If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
        !            25: *  is of order M:
        !            26: *  if m >= k, Q = H(1) H(2) . . . H(k) and ZUNGBR returns the first n
        !            27: *  columns of Q, where m >= n >= k;
        !            28: *  if m < k, Q = H(1) H(2) . . . H(m-1) and ZUNGBR returns Q as an
        !            29: *  M-by-M matrix.
        !            30: *
        !            31: *  If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H
        !            32: *  is of order N:
        !            33: *  if k < n, P**H = G(k) . . . G(2) G(1) and ZUNGBR returns the first m
        !            34: *  rows of P**H, where n >= m >= k;
        !            35: *  if k >= n, P**H = G(n-1) . . . G(2) G(1) and ZUNGBR returns P**H as
        !            36: *  an N-by-N matrix.
        !            37: *
        !            38: *  Arguments
        !            39: *  =========
        !            40: *
        !            41: *  VECT    (input) CHARACTER*1
        !            42: *          Specifies whether the matrix Q or the matrix P**H is
        !            43: *          required, as defined in the transformation applied by ZGEBRD:
        !            44: *          = 'Q':  generate Q;
        !            45: *          = 'P':  generate P**H.
        !            46: *
        !            47: *  M       (input) INTEGER
        !            48: *          The number of rows of the matrix Q or P**H to be returned.
        !            49: *          M >= 0.
        !            50: *
        !            51: *  N       (input) INTEGER
        !            52: *          The number of columns of the matrix Q or P**H to be returned.
        !            53: *          N >= 0.
        !            54: *          If VECT = 'Q', M >= N >= min(M,K);
        !            55: *          if VECT = 'P', N >= M >= min(N,K).
        !            56: *
        !            57: *  K       (input) INTEGER
        !            58: *          If VECT = 'Q', the number of columns in the original M-by-K
        !            59: *          matrix reduced by ZGEBRD.
        !            60: *          If VECT = 'P', the number of rows in the original K-by-N
        !            61: *          matrix reduced by ZGEBRD.
        !            62: *          K >= 0.
        !            63: *
        !            64: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            65: *          On entry, the vectors which define the elementary reflectors,
        !            66: *          as returned by ZGEBRD.
        !            67: *          On exit, the M-by-N matrix Q or P**H.
        !            68: *
        !            69: *  LDA     (input) INTEGER
        !            70: *          The leading dimension of the array A. LDA >= M.
        !            71: *
        !            72: *  TAU     (input) COMPLEX*16 array, dimension
        !            73: *                                (min(M,K)) if VECT = 'Q'
        !            74: *                                (min(N,K)) if VECT = 'P'
        !            75: *          TAU(i) must contain the scalar factor of the elementary
        !            76: *          reflector H(i) or G(i), which determines Q or P**H, as
        !            77: *          returned by ZGEBRD in its array argument TAUQ or TAUP.
        !            78: *
        !            79: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !            80: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            81: *
        !            82: *  LWORK   (input) INTEGER
        !            83: *          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
        !            84: *          For optimum performance LWORK >= min(M,N)*NB, where NB
        !            85: *          is the optimal blocksize.
        !            86: *
        !            87: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            88: *          only calculates the optimal size of the WORK array, returns
        !            89: *          this value as the first entry of the WORK array, and no error
        !            90: *          message related to LWORK is issued by XERBLA.
        !            91: *
        !            92: *  INFO    (output) INTEGER
        !            93: *          = 0:  successful exit
        !            94: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !            95: *
        !            96: *  =====================================================================
        !            97: *
        !            98: *     .. Parameters ..
        !            99:       COMPLEX*16         ZERO, ONE
        !           100:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
        !           101:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
        !           102: *     ..
        !           103: *     .. Local Scalars ..
        !           104:       LOGICAL            LQUERY, WANTQ
        !           105:       INTEGER            I, IINFO, J, LWKOPT, MN, NB
        !           106: *     ..
        !           107: *     .. External Functions ..
        !           108:       LOGICAL            LSAME
        !           109:       INTEGER            ILAENV
        !           110:       EXTERNAL           LSAME, ILAENV
        !           111: *     ..
        !           112: *     .. External Subroutines ..
        !           113:       EXTERNAL           XERBLA, ZUNGLQ, ZUNGQR
        !           114: *     ..
        !           115: *     .. Intrinsic Functions ..
        !           116:       INTRINSIC          MAX, MIN
        !           117: *     ..
        !           118: *     .. Executable Statements ..
        !           119: *
        !           120: *     Test the input arguments
        !           121: *
        !           122:       INFO = 0
        !           123:       WANTQ = LSAME( VECT, 'Q' )
        !           124:       MN = MIN( M, N )
        !           125:       LQUERY = ( LWORK.EQ.-1 )
        !           126:       IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
        !           127:          INFO = -1
        !           128:       ELSE IF( M.LT.0 ) THEN
        !           129:          INFO = -2
        !           130:       ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
        !           131:      $         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
        !           132:      $         MIN( N, K ) ) ) ) THEN
        !           133:          INFO = -3
        !           134:       ELSE IF( K.LT.0 ) THEN
        !           135:          INFO = -4
        !           136:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           137:          INFO = -6
        !           138:       ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
        !           139:          INFO = -9
        !           140:       END IF
        !           141: *
        !           142:       IF( INFO.EQ.0 ) THEN
        !           143:          IF( WANTQ ) THEN
        !           144:             NB = ILAENV( 1, 'ZUNGQR', ' ', M, N, K, -1 )
        !           145:          ELSE
        !           146:             NB = ILAENV( 1, 'ZUNGLQ', ' ', M, N, K, -1 )
        !           147:          END IF
        !           148:          LWKOPT = MAX( 1, MN )*NB
        !           149:          WORK( 1 ) = LWKOPT
        !           150:       END IF
        !           151: *
        !           152:       IF( INFO.NE.0 ) THEN
        !           153:          CALL XERBLA( 'ZUNGBR', -INFO )
        !           154:          RETURN
        !           155:       ELSE IF( LQUERY ) THEN
        !           156:          RETURN
        !           157:       END IF
        !           158: *
        !           159: *     Quick return if possible
        !           160: *
        !           161:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
        !           162:          WORK( 1 ) = 1
        !           163:          RETURN
        !           164:       END IF
        !           165: *
        !           166:       IF( WANTQ ) THEN
        !           167: *
        !           168: *        Form Q, determined by a call to ZGEBRD to reduce an m-by-k
        !           169: *        matrix
        !           170: *
        !           171:          IF( M.GE.K ) THEN
        !           172: *
        !           173: *           If m >= k, assume m >= n >= k
        !           174: *
        !           175:             CALL ZUNGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
        !           176: *
        !           177:          ELSE
        !           178: *
        !           179: *           If m < k, assume m = n
        !           180: *
        !           181: *           Shift the vectors which define the elementary reflectors one
        !           182: *           column to the right, and set the first row and column of Q
        !           183: *           to those of the unit matrix
        !           184: *
        !           185:             DO 20 J = M, 2, -1
        !           186:                A( 1, J ) = ZERO
        !           187:                DO 10 I = J + 1, M
        !           188:                   A( I, J ) = A( I, J-1 )
        !           189:    10          CONTINUE
        !           190:    20       CONTINUE
        !           191:             A( 1, 1 ) = ONE
        !           192:             DO 30 I = 2, M
        !           193:                A( I, 1 ) = ZERO
        !           194:    30       CONTINUE
        !           195:             IF( M.GT.1 ) THEN
        !           196: *
        !           197: *              Form Q(2:m,2:m)
        !           198: *
        !           199:                CALL ZUNGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
        !           200:      $                      LWORK, IINFO )
        !           201:             END IF
        !           202:          END IF
        !           203:       ELSE
        !           204: *
        !           205: *        Form P', determined by a call to ZGEBRD to reduce a k-by-n
        !           206: *        matrix
        !           207: *
        !           208:          IF( K.LT.N ) THEN
        !           209: *
        !           210: *           If k < n, assume k <= m <= n
        !           211: *
        !           212:             CALL ZUNGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
        !           213: *
        !           214:          ELSE
        !           215: *
        !           216: *           If k >= n, assume m = n
        !           217: *
        !           218: *           Shift the vectors which define the elementary reflectors one
        !           219: *           row downward, and set the first row and column of P' to
        !           220: *           those of the unit matrix
        !           221: *
        !           222:             A( 1, 1 ) = ONE
        !           223:             DO 40 I = 2, N
        !           224:                A( I, 1 ) = ZERO
        !           225:    40       CONTINUE
        !           226:             DO 60 J = 2, N
        !           227:                DO 50 I = J - 1, 2, -1
        !           228:                   A( I, J ) = A( I-1, J )
        !           229:    50          CONTINUE
        !           230:                A( 1, J ) = ZERO
        !           231:    60       CONTINUE
        !           232:             IF( N.GT.1 ) THEN
        !           233: *
        !           234: *              Form P'(2:n,2:n)
        !           235: *
        !           236:                CALL ZUNGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
        !           237:      $                      LWORK, IINFO )
        !           238:             END IF
        !           239:          END IF
        !           240:       END IF
        !           241:       WORK( 1 ) = LWKOPT
        !           242:       RETURN
        !           243: *
        !           244: *     End of ZUNGBR
        !           245: *
        !           246:       END

CVSweb interface <joel.bertrand@systella.fr>