File:  [local] / rpl / lapack / lapack / zuncsd2by1.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:33 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b ZUNCSD2BY1
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZUNCSD2BY1 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuncsd2by1.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zuncsd2by1.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zuncsd2by1.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
   22: *                              X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
   23: *                              LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
   24: *                              INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       CHARACTER          JOBU1, JOBU2, JOBV1T
   28: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
   29: *      $                   M, P, Q
   30: *       INTEGER            LRWORK, LRWORKMIN, LRWORKOPT
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       DOUBLE PRECISION   RWORK(*)
   34: *       DOUBLE PRECISION   THETA(*)
   35: *       COMPLEX*16         U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
   36: *      $                   X11(LDX11,*), X21(LDX21,*)
   37: *       INTEGER            IWORK(*)
   38: *       ..
   39: *
   40: *
   41: *> \par Purpose:
   42: *> =============
   43: *>
   44: *>\verbatim
   45: *>
   46: *> ZUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
   47: *> orthonormal columns that has been partitioned into a 2-by-1 block
   48: *> structure:
   49: *>
   50: *>                                [  I1 0  0 ]
   51: *>                                [  0  C  0 ]
   52: *>          [ X11 ]   [ U1 |    ] [  0  0  0 ]
   53: *>      X = [-----] = [---------] [----------] V1**T .
   54: *>          [ X21 ]   [    | U2 ] [  0  0  0 ]
   55: *>                                [  0  S  0 ]
   56: *>                                [  0  0  I2]
   57: *>
   58: *> X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P,
   59: *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
   60: *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
   61: *> R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a
   62: *> K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0).
   63: *> \endverbatim
   64: *
   65: *  Arguments:
   66: *  ==========
   67: *
   68: *> \param[in] JOBU1
   69: *> \verbatim
   70: *>          JOBU1 is CHARACTER
   71: *>          = 'Y':      U1 is computed;
   72: *>          otherwise:  U1 is not computed.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] JOBU2
   76: *> \verbatim
   77: *>          JOBU2 is CHARACTER
   78: *>          = 'Y':      U2 is computed;
   79: *>          otherwise:  U2 is not computed.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] JOBV1T
   83: *> \verbatim
   84: *>          JOBV1T is CHARACTER
   85: *>          = 'Y':      V1T is computed;
   86: *>          otherwise:  V1T is not computed.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] M
   90: *> \verbatim
   91: *>          M is INTEGER
   92: *>          The number of rows in X.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] P
   96: *> \verbatim
   97: *>          P is INTEGER
   98: *>          The number of rows in X11. 0 <= P <= M.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] Q
  102: *> \verbatim
  103: *>          Q is INTEGER
  104: *>          The number of columns in X11 and X21. 0 <= Q <= M.
  105: *> \endverbatim
  106: *>
  107: *> \param[in,out] X11
  108: *> \verbatim
  109: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
  110: *>          On entry, part of the unitary matrix whose CSD is desired.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] LDX11
  114: *> \verbatim
  115: *>          LDX11 is INTEGER
  116: *>          The leading dimension of X11. LDX11 >= MAX(1,P).
  117: *> \endverbatim
  118: *>
  119: *> \param[in,out] X21
  120: *> \verbatim
  121: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
  122: *>          On entry, part of the unitary matrix whose CSD is desired.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LDX21
  126: *> \verbatim
  127: *>          LDX21 is INTEGER
  128: *>          The leading dimension of X21. LDX21 >= MAX(1,M-P).
  129: *> \endverbatim
  130: *>
  131: *> \param[out] THETA
  132: *> \verbatim
  133: *>          THETA is DOUBLE PRECISION array, dimension (R), in which R =
  134: *>          MIN(P,M-P,Q,M-Q).
  135: *>          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  136: *>          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  137: *> \endverbatim
  138: *>
  139: *> \param[out] U1
  140: *> \verbatim
  141: *>          U1 is COMPLEX*16 array, dimension (P)
  142: *>          If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LDU1
  146: *> \verbatim
  147: *>          LDU1 is INTEGER
  148: *>          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  149: *>          MAX(1,P).
  150: *> \endverbatim
  151: *>
  152: *> \param[out] U2
  153: *> \verbatim
  154: *>          U2 is COMPLEX*16 array, dimension (M-P)
  155: *>          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
  156: *>          matrix U2.
  157: *> \endverbatim
  158: *>
  159: *> \param[in] LDU2
  160: *> \verbatim
  161: *>          LDU2 is INTEGER
  162: *>          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  163: *>          MAX(1,M-P).
  164: *> \endverbatim
  165: *>
  166: *> \param[out] V1T
  167: *> \verbatim
  168: *>          V1T is COMPLEX*16 array, dimension (Q)
  169: *>          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
  170: *>          matrix V1**T.
  171: *> \endverbatim
  172: *>
  173: *> \param[in] LDV1T
  174: *> \verbatim
  175: *>          LDV1T is INTEGER
  176: *>          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  177: *>          MAX(1,Q).
  178: *> \endverbatim
  179: *>
  180: *> \param[out] WORK
  181: *> \verbatim
  182: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  183: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  184: *> \endverbatim
  185: *>
  186: *> \param[in] LWORK
  187: *> \verbatim
  188: *>          LWORK is INTEGER
  189: *>          The dimension of the array WORK.
  190: *>
  191: *>          If LWORK = -1, then a workspace query is assumed; the routine
  192: *>          only calculates the optimal size of the WORK array, returns
  193: *>          this value as the first entry of the work array, and no error
  194: *>          message related to LWORK is issued by XERBLA.
  195: *> \endverbatim
  196: *>
  197: *> \param[out] RWORK
  198: *> \verbatim
  199: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  200: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  201: *>          If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
  202: *>          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  203: *>          define the matrix in intermediate bidiagonal-block form
  204: *>          remaining after nonconvergence. INFO specifies the number
  205: *>          of nonzero PHI's.
  206: *> \endverbatim
  207: *>
  208: *> \param[in] LRWORK
  209: *> \verbatim
  210: *>          LRWORK is INTEGER
  211: *>          The dimension of the array RWORK.
  212: *>
  213: *>          If LRWORK = -1, then a workspace query is assumed; the routine
  214: *>          only calculates the optimal size of the RWORK array, returns
  215: *>          this value as the first entry of the work array, and no error
  216: *>          message related to LRWORK is issued by XERBLA.
  217: *> \endverbatim
  218: *
  219: *> \param[out] IWORK
  220: *> \verbatim
  221: *>          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  222: *> \endverbatim
  223: *>
  224: *> \param[out] INFO
  225: *> \verbatim
  226: *>          INFO is INTEGER
  227: *>          = 0:  successful exit.
  228: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  229: *>          > 0:  ZBBCSD did not converge. See the description of WORK
  230: *>                above for details.
  231: *> \endverbatim
  232: *
  233: *> \par References:
  234: *  ================
  235: *>
  236: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  237: *>      Algorithms, 50(1):33-65, 2009.
  238: *
  239: *  Authors:
  240: *  ========
  241: *
  242: *> \author Univ. of Tennessee
  243: *> \author Univ. of California Berkeley
  244: *> \author Univ. of Colorado Denver
  245: *> \author NAG Ltd.
  246: *
  247: *> \date July 2012
  248: *
  249: *> \ingroup complex16OTHERcomputational
  250: *
  251: *  =====================================================================
  252:       SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  253:      $                       X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  254:      $                       LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  255:      $                       INFO )
  256: *
  257: *  -- LAPACK computational routine (version 3.7.0) --
  258: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  259: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  260: *     July 2012
  261: *
  262: *     .. Scalar Arguments ..
  263:       CHARACTER          JOBU1, JOBU2, JOBV1T
  264:       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  265:      $                   M, P, Q
  266:       INTEGER            LRWORK, LRWORKMIN, LRWORKOPT
  267: *     ..
  268: *     .. Array Arguments ..
  269:       DOUBLE PRECISION   RWORK(*)
  270:       DOUBLE PRECISION   THETA(*)
  271:       COMPLEX*16         U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  272:      $                   X11(LDX11,*), X21(LDX21,*)
  273:       INTEGER            IWORK(*)
  274: *     ..
  275: *
  276: *  =====================================================================
  277: *
  278: *     .. Parameters ..
  279:       COMPLEX*16         ONE, ZERO
  280:       PARAMETER          ( ONE = (1.0D0,0.0D0), ZERO = (0.0D0,0.0D0) )
  281: *     ..
  282: *     .. Local Scalars ..
  283:       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  284:      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  285:      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  286:      $                   J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  287:      $                   LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  288:      $                   LWORKMIN, LWORKOPT, R
  289:       LOGICAL            LQUERY, WANTU1, WANTU2, WANTV1T
  290: *     ..
  291: *     .. Local Arrays ..
  292:       DOUBLE PRECISION   DUM( 1 )
  293:       COMPLEX*16         CDUM( 1, 1 )
  294: *     ..
  295: *     .. External Subroutines ..
  296:       EXTERNAL           ZBBCSD, ZCOPY, ZLACPY, ZLAPMR, ZLAPMT, ZUNBDB1,
  297:      $                   ZUNBDB2, ZUNBDB3, ZUNBDB4, ZUNGLQ, ZUNGQR,
  298:      $                   XERBLA
  299: *     ..
  300: *     .. External Functions ..
  301:       LOGICAL            LSAME
  302:       EXTERNAL           LSAME
  303: *     ..
  304: *     .. Intrinsic Function ..
  305:       INTRINSIC          INT, MAX, MIN
  306: *     ..
  307: *     .. Executable Statements ..
  308: *
  309: *     Test input arguments
  310: *
  311:       INFO = 0
  312:       WANTU1 = LSAME( JOBU1, 'Y' )
  313:       WANTU2 = LSAME( JOBU2, 'Y' )
  314:       WANTV1T = LSAME( JOBV1T, 'Y' )
  315:       LQUERY = LWORK .EQ. -1
  316: *
  317:       IF( M .LT. 0 ) THEN
  318:          INFO = -4
  319:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  320:          INFO = -5
  321:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  322:          INFO = -6
  323:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  324:          INFO = -8
  325:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  326:          INFO = -10
  327:       ELSE IF( WANTU1 .AND. LDU1 .LT. MAX( 1, P ) ) THEN
  328:          INFO = -13
  329:       ELSE IF( WANTU2 .AND. LDU2 .LT. MAX( 1, M - P ) ) THEN
  330:          INFO = -15
  331:       ELSE IF( WANTV1T .AND. LDV1T .LT. MAX( 1, Q ) ) THEN
  332:          INFO = -17
  333:       END IF
  334: *
  335:       R = MIN( P, M-P, Q, M-Q )
  336: *
  337: *     Compute workspace
  338: *
  339: *       WORK layout:
  340: *     |-----------------------------------------|
  341: *     | LWORKOPT (1)                            |
  342: *     |-----------------------------------------|
  343: *     | TAUP1 (MAX(1,P))                        |
  344: *     | TAUP2 (MAX(1,M-P))                      |
  345: *     | TAUQ1 (MAX(1,Q))                        |
  346: *     |-----------------------------------------|
  347: *     | ZUNBDB WORK | ZUNGQR WORK | ZUNGLQ WORK |
  348: *     |             |             |             |
  349: *     |             |             |             |
  350: *     |             |             |             |
  351: *     |             |             |             |
  352: *     |-----------------------------------------|
  353: *       RWORK layout:
  354: *     |------------------|
  355: *     | LRWORKOPT (1)    |
  356: *     |------------------|
  357: *     | PHI (MAX(1,R-1)) |
  358: *     |------------------|
  359: *     | B11D (R)         |
  360: *     | B11E (R-1)       |
  361: *     | B12D (R)         |
  362: *     | B12E (R-1)       |
  363: *     | B21D (R)         |
  364: *     | B21E (R-1)       |
  365: *     | B22D (R)         |
  366: *     | B22E (R-1)       |
  367: *     | ZBBCSD RWORK     |
  368: *     |------------------|
  369: *
  370:       IF( INFO .EQ. 0 ) THEN
  371:          IPHI = 2
  372:          IB11D = IPHI + MAX( 1, R-1 )
  373:          IB11E = IB11D + MAX( 1, R )
  374:          IB12D = IB11E + MAX( 1, R - 1 )
  375:          IB12E = IB12D + MAX( 1, R )
  376:          IB21D = IB12E + MAX( 1, R - 1 )
  377:          IB21E = IB21D + MAX( 1, R )
  378:          IB22D = IB21E + MAX( 1, R - 1 )
  379:          IB22E = IB22D + MAX( 1, R )
  380:          IBBCSD = IB22E + MAX( 1, R - 1 )
  381:          ITAUP1 = 2
  382:          ITAUP2 = ITAUP1 + MAX( 1, P )
  383:          ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  384:          IORBDB = ITAUQ1 + MAX( 1, Q )
  385:          IORGQR = ITAUQ1 + MAX( 1, Q )
  386:          IORGLQ = ITAUQ1 + MAX( 1, Q )
  387:          LORGQRMIN = 1
  388:          LORGQROPT = 1
  389:          LORGLQMIN = 1
  390:          LORGLQOPT = 1
  391:          IF( R .EQ. Q ) THEN
  392:             CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  393:      $                    CDUM, CDUM, CDUM, WORK, -1, CHILDINFO )
  394:             LORBDB = INT( WORK(1) )
  395:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  396:                CALL ZUNGQR( P, P, Q, U1, LDU1, CDUM, WORK(1), -1,
  397:      $                      CHILDINFO )
  398:                LORGQRMIN = MAX( LORGQRMIN, P )
  399:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  400:             ENDIF
  401:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  402:                CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, CDUM, WORK(1), -1,
  403:      $                      CHILDINFO )
  404:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  405:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  406:             END IF
  407:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  408:                CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T, LDV1T,
  409:      $                      CDUM, WORK(1), -1, CHILDINFO )
  410:                LORGLQMIN = MAX( LORGLQMIN, Q-1 )
  411:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  412:             END IF
  413:             CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  414:      $                   DUM, U1, LDU1, U2, LDU2, V1T, LDV1T, CDUM, 1,
  415:      $                   DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  416:      $                   RWORK(1), -1, CHILDINFO )
  417:             LBBCSD = INT( RWORK(1) )
  418:          ELSE IF( R .EQ. P ) THEN
  419:             CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  420:      $                    CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO )
  421:             LORBDB = INT( WORK(1) )
  422:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  423:                CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, CDUM, WORK(1),
  424:      $                      -1, CHILDINFO )
  425:                LORGQRMIN = MAX( LORGQRMIN, P-1 )
  426:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  427:             END IF
  428:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  429:                CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, CDUM, WORK(1), -1,
  430:      $                      CHILDINFO )
  431:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  432:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  433:             END IF
  434:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  435:                CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, CDUM, WORK(1), -1,
  436:      $                      CHILDINFO )
  437:                LORGLQMIN = MAX( LORGLQMIN, Q )
  438:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  439:             END IF
  440:             CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  441:      $                   DUM, V1T, LDV1T, CDUM, 1, U1, LDU1, U2, LDU2,
  442:      $                   DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  443:      $                   RWORK(1), -1, CHILDINFO )
  444:             LBBCSD = INT( RWORK(1) )
  445:          ELSE IF( R .EQ. M-P ) THEN
  446:             CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  447:      $                    CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO )
  448:             LORBDB = INT( WORK(1) )
  449:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  450:                CALL ZUNGQR( P, P, Q, U1, LDU1, CDUM, WORK(1), -1,
  451:      $                      CHILDINFO )
  452:                LORGQRMIN = MAX( LORGQRMIN, P )
  453:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  454:             END IF
  455:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  456:                CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, CDUM,
  457:      $                      WORK(1), -1, CHILDINFO )
  458:                LORGQRMIN = MAX( LORGQRMIN, M-P-1 )
  459:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  460:             END IF
  461:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  462:                CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, CDUM, WORK(1), -1,
  463:      $                      CHILDINFO )
  464:                LORGLQMIN = MAX( LORGLQMIN, Q )
  465:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  466:             END IF
  467:             CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  468:      $                   THETA, DUM, CDUM, 1, V1T, LDV1T, U2, LDU2, U1,
  469:      $                   LDU1, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  470:      $                   RWORK(1), -1, CHILDINFO )
  471:             LBBCSD = INT( RWORK(1) )
  472:          ELSE
  473:             CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  474:      $                    CDUM, CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO
  475:      $                  )
  476:             LORBDB = M + INT( WORK(1) )
  477:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  478:                CALL ZUNGQR( P, P, M-Q, U1, LDU1, CDUM, WORK(1), -1,
  479:      $                      CHILDINFO )
  480:                LORGQRMIN = MAX( LORGQRMIN, P )
  481:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  482:             END IF
  483:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  484:                CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, CDUM, WORK(1), -1,
  485:      $                      CHILDINFO )
  486:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  487:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  488:             END IF
  489:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  490:                CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, CDUM, WORK(1), -1,
  491:      $                      CHILDINFO )
  492:                LORGLQMIN = MAX( LORGLQMIN, Q )
  493:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  494:             END IF
  495:             CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  496:      $                   THETA, DUM, U2, LDU2, U1, LDU1, CDUM, 1, V1T,
  497:      $                   LDV1T, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  498:      $                   RWORK(1), -1, CHILDINFO )
  499:             LBBCSD = INT( RWORK(1) )
  500:          END IF
  501:          LRWORKMIN = IBBCSD+LBBCSD-1
  502:          LRWORKOPT = LRWORKMIN
  503:          RWORK(1) = LRWORKOPT
  504:          LWORKMIN = MAX( IORBDB+LORBDB-1,
  505:      $                   IORGQR+LORGQRMIN-1,
  506:      $                   IORGLQ+LORGLQMIN-1 )
  507:          LWORKOPT = MAX( IORBDB+LORBDB-1,
  508:      $                   IORGQR+LORGQROPT-1,
  509:      $                   IORGLQ+LORGLQOPT-1 )
  510:          WORK(1) = LWORKOPT
  511:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  512:             INFO = -19
  513:          END IF
  514:       END IF
  515:       IF( INFO .NE. 0 ) THEN
  516:          CALL XERBLA( 'ZUNCSD2BY1', -INFO )
  517:          RETURN
  518:       ELSE IF( LQUERY ) THEN
  519:          RETURN
  520:       END IF
  521:       LORGQR = LWORK-IORGQR+1
  522:       LORGLQ = LWORK-IORGLQ+1
  523: *
  524: *     Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  525: *     in which R = MIN(P,M-P,Q,M-Q)
  526: *
  527:       IF( R .EQ. Q ) THEN
  528: *
  529: *        Case 1: R = Q
  530: *
  531: *        Simultaneously bidiagonalize X11 and X21
  532: *
  533:          CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  534:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  535:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  536: *
  537: *        Accumulate Householder reflectors
  538: *
  539:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  540:             CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  541:             CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  542:      $                   LORGQR, CHILDINFO )
  543:          END IF
  544:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  545:             CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  546:             CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  547:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  548:          END IF
  549:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  550:             V1T(1,1) = ONE
  551:             DO J = 2, Q
  552:                V1T(1,J) = ZERO
  553:                V1T(J,1) = ZERO
  554:             END DO
  555:             CALL ZLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  556:      $                   LDV1T )
  557:             CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  558:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  559:          END IF
  560: *
  561: *        Simultaneously diagonalize X11 and X21.
  562: *
  563:          CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  564:      $                RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, CDUM,
  565:      $                1, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  566:      $                RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  567:      $                RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  568:      $                CHILDINFO )
  569: *
  570: *        Permute rows and columns to place zero submatrices in
  571: *        preferred positions
  572: *
  573:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  574:             DO I = 1, Q
  575:                IWORK(I) = M - P - Q + I
  576:             END DO
  577:             DO I = Q + 1, M - P
  578:                IWORK(I) = I - Q
  579:             END DO
  580:             CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  581:          END IF
  582:       ELSE IF( R .EQ. P ) THEN
  583: *
  584: *        Case 2: R = P
  585: *
  586: *        Simultaneously bidiagonalize X11 and X21
  587: *
  588:          CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  589:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  590:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  591: *
  592: *        Accumulate Householder reflectors
  593: *
  594:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  595:             U1(1,1) = ONE
  596:             DO J = 2, P
  597:                U1(1,J) = ZERO
  598:                U1(J,1) = ZERO
  599:             END DO
  600:             CALL ZLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  601:             CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  602:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  603:          END IF
  604:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  605:             CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  606:             CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  607:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  608:          END IF
  609:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  610:             CALL ZLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  611:             CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  612:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  613:          END IF
  614: *
  615: *        Simultaneously diagonalize X11 and X21.
  616: *
  617:          CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  618:      $                RWORK(IPHI), V1T, LDV1T, CDUM, 1, U1, LDU1, U2,
  619:      $                LDU2, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  620:      $                RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  621:      $                RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  622:      $                CHILDINFO )
  623: *
  624: *        Permute rows and columns to place identity submatrices in
  625: *        preferred positions
  626: *
  627:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  628:             DO I = 1, Q
  629:                IWORK(I) = M - P - Q + I
  630:             END DO
  631:             DO I = Q + 1, M - P
  632:                IWORK(I) = I - Q
  633:             END DO
  634:             CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  635:          END IF
  636:       ELSE IF( R .EQ. M-P ) THEN
  637: *
  638: *        Case 3: R = M-P
  639: *
  640: *        Simultaneously bidiagonalize X11 and X21
  641: *
  642:          CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  643:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  644:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  645: *
  646: *        Accumulate Householder reflectors
  647: *
  648:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  649:             CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  650:             CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  651:      $                   LORGQR, CHILDINFO )
  652:          END IF
  653:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  654:             U2(1,1) = ONE
  655:             DO J = 2, M-P
  656:                U2(1,J) = ZERO
  657:                U2(J,1) = ZERO
  658:             END DO
  659:             CALL ZLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  660:      $                   LDU2 )
  661:             CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  662:      $                   WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  663:          END IF
  664:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  665:             CALL ZLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  666:             CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  667:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  668:          END IF
  669: *
  670: *        Simultaneously diagonalize X11 and X21.
  671: *
  672:          CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  673:      $                THETA, RWORK(IPHI), CDUM, 1, V1T, LDV1T, U2, LDU2,
  674:      $                U1, LDU1, RWORK(IB11D), RWORK(IB11E),
  675:      $                RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  676:      $                RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  677:      $                RWORK(IBBCSD), LBBCSD, CHILDINFO )
  678: *
  679: *        Permute rows and columns to place identity submatrices in
  680: *        preferred positions
  681: *
  682:          IF( Q .GT. R ) THEN
  683:             DO I = 1, R
  684:                IWORK(I) = Q - R + I
  685:             END DO
  686:             DO I = R + 1, Q
  687:                IWORK(I) = I - R
  688:             END DO
  689:             IF( WANTU1 ) THEN
  690:                CALL ZLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  691:             END IF
  692:             IF( WANTV1T ) THEN
  693:                CALL ZLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  694:             END IF
  695:          END IF
  696:       ELSE
  697: *
  698: *        Case 4: R = M-Q
  699: *
  700: *        Simultaneously bidiagonalize X11 and X21
  701: *
  702:          CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  703:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  704:      $                 WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  705:      $                 LORBDB-M, CHILDINFO )
  706: *
  707: *        Accumulate Householder reflectors
  708: *
  709:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  710:             CALL ZCOPY( P, WORK(IORBDB), 1, U1, 1 )
  711:             DO J = 2, P
  712:                U1(1,J) = ZERO
  713:             END DO
  714:             CALL ZLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  715:      $                   LDU1 )
  716:             CALL ZUNGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  717:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  718:          END IF
  719:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  720:             CALL ZCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  721:             DO J = 2, M-P
  722:                U2(1,J) = ZERO
  723:             END DO
  724:             CALL ZLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  725:      $                   LDU2 )
  726:             CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  727:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  728:          END IF
  729:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  730:             CALL ZLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  731:             CALL ZLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  732:      $                   V1T(M-Q+1,M-Q+1), LDV1T )
  733:             CALL ZLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  734:      $                   V1T(P+1,P+1), LDV1T )
  735:             CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  736:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  737:          END IF
  738: *
  739: *        Simultaneously diagonalize X11 and X21.
  740: *
  741:          CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  742:      $                THETA, RWORK(IPHI), U2, LDU2, U1, LDU1, CDUM, 1,
  743:      $                V1T, LDV1T, RWORK(IB11D), RWORK(IB11E),
  744:      $                RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  745:      $                RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  746:      $                RWORK(IBBCSD), LBBCSD, CHILDINFO )
  747: *
  748: *        Permute rows and columns to place identity submatrices in
  749: *        preferred positions
  750: *
  751:          IF( P .GT. R ) THEN
  752:             DO I = 1, R
  753:                IWORK(I) = P - R + I
  754:             END DO
  755:             DO I = R + 1, P
  756:                IWORK(I) = I - R
  757:             END DO
  758:             IF( WANTU1 ) THEN
  759:                CALL ZLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  760:             END IF
  761:             IF( WANTV1T ) THEN
  762:                CALL ZLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  763:             END IF
  764:          END IF
  765:       END IF
  766: *
  767:       RETURN
  768: *
  769: *     End of ZUNCSD2BY1
  770: *
  771:       END
  772: 

CVSweb interface <joel.bertrand@systella.fr>