File:  [local] / rpl / lapack / lapack / zuncsd2by1.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:27:15 2016 UTC (7 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD

Mise à jour de lapack.

    1: *> \brief \b ZUNCSD2BY1
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZUNCSD2BY1 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuncsd2by1.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zuncsd2by1.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zuncsd2by1.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
   22: *                              X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
   23: *                              LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
   24: *                              INFO )
   25:    26: *       .. Scalar Arguments ..
   27: *       CHARACTER          JOBU1, JOBU2, JOBV1T
   28: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
   29: *      $                   M, P, Q
   30: *       INTEGER            LRWORK, LRWORKMIN, LRWORKOPT
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       DOUBLE PRECISION   RWORK(*)
   34: *       DOUBLE PRECISION   THETA(*)
   35: *       COMPLEX*16         U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
   36: *      $                   X11(LDX11,*), X21(LDX21,*)
   37: *       INTEGER            IWORK(*)
   38: *       ..
   39: *    
   40:    41: *> \par Purpose:
   42: *> =============
   43: *>
   44: *>\verbatim
   45: *>
   46: *> ZUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
   47: *> orthonormal columns that has been partitioned into a 2-by-1 block
   48: *> structure:
   49: *>
   50: *>                                [  I  0  0 ]
   51: *>                                [  0  C  0 ]
   52: *>          [ X11 ]   [ U1 |    ] [  0  0  0 ]
   53: *>      X = [-----] = [---------] [----------] V1**T .
   54: *>          [ X21 ]   [    | U2 ] [  0  0  0 ]
   55: *>                                [  0  S  0 ]
   56: *>                                [  0  0  I ]
   57: *> 
   58: *> X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P,
   59: *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
   60: *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
   61: *> R = MIN(P,M-P,Q,M-Q).
   62: *> \endverbatim
   63: *
   64: *  Arguments:
   65: *  ==========
   66: *
   67: *> \param[in] JOBU1
   68: *> \verbatim
   69: *>          JOBU1 is CHARACTER
   70: *>          = 'Y':      U1 is computed;
   71: *>          otherwise:  U1 is not computed.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] JOBU2
   75: *> \verbatim
   76: *>          JOBU2 is CHARACTER
   77: *>          = 'Y':      U2 is computed;
   78: *>          otherwise:  U2 is not computed.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] JOBV1T
   82: *> \verbatim
   83: *>          JOBV1T is CHARACTER
   84: *>          = 'Y':      V1T is computed;
   85: *>          otherwise:  V1T is not computed.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] M
   89: *> \verbatim
   90: *>          M is INTEGER
   91: *>          The number of rows in X.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] P
   95: *> \verbatim
   96: *>          P is INTEGER
   97: *>          The number of rows in X11. 0 <= P <= M.
   98: *> \endverbatim
   99: *>
  100: *> \param[in] Q
  101: *> \verbatim
  102: *>          Q is INTEGER
  103: *>          The number of columns in X11 and X21. 0 <= Q <= M.
  104: *> \endverbatim
  105: *>
  106: *> \param[in,out] X11
  107: *> \verbatim
  108: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
  109: *>          On entry, part of the unitary matrix whose CSD is desired.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDX11
  113: *> \verbatim
  114: *>          LDX11 is INTEGER
  115: *>          The leading dimension of X11. LDX11 >= MAX(1,P).
  116: *> \endverbatim
  117: *>
  118: *> \param[in,out] X21
  119: *> \verbatim
  120: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
  121: *>          On entry, part of the unitary matrix whose CSD is desired.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] LDX21
  125: *> \verbatim
  126: *>          LDX21 is INTEGER
  127: *>          The leading dimension of X21. LDX21 >= MAX(1,M-P).
  128: *> \endverbatim
  129: *>
  130: *> \param[out] THETA
  131: *> \verbatim
  132: *>          THETA is DOUBLE PRECISION array, dimension (R), in which R =
  133: *>          MIN(P,M-P,Q,M-Q).
  134: *>          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  135: *>          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  136: *> \endverbatim
  137: *>
  138: *> \param[out] U1
  139: *> \verbatim
  140: *>          U1 is COMPLEX*16 array, dimension (P)
  141: *>          If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
  142: *> \endverbatim
  143: *>
  144: *> \param[in] LDU1
  145: *> \verbatim
  146: *>          LDU1 is INTEGER
  147: *>          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  148: *>          MAX(1,P).
  149: *> \endverbatim
  150: *>
  151: *> \param[out] U2
  152: *> \verbatim
  153: *>          U2 is COMPLEX*16 array, dimension (M-P)
  154: *>          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
  155: *>          matrix U2.
  156: *> \endverbatim
  157: *>
  158: *> \param[in] LDU2
  159: *> \verbatim
  160: *>          LDU2 is INTEGER
  161: *>          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  162: *>          MAX(1,M-P).
  163: *> \endverbatim
  164: *>
  165: *> \param[out] V1T
  166: *> \verbatim
  167: *>          V1T is COMPLEX*16 array, dimension (Q)
  168: *>          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
  169: *>          matrix V1**T.
  170: *> \endverbatim
  171: *>
  172: *> \param[in] LDV1T
  173: *> \verbatim
  174: *>          LDV1T is INTEGER
  175: *>          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  176: *>          MAX(1,Q).
  177: *> \endverbatim
  178: *>
  179: *> \param[out] WORK
  180: *> \verbatim
  181: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  182: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  183: *> \endverbatim
  184: *>
  185: *> \param[in] LWORK
  186: *> \verbatim
  187: *>          LWORK is INTEGER
  188: *>          The dimension of the array WORK.
  189: *>
  190: *>          If LWORK = -1, then a workspace query is assumed; the routine
  191: *>          only calculates the optimal size of the WORK array, returns
  192: *>          this value as the first entry of the work array, and no error
  193: *>          message related to LWORK is issued by XERBLA.
  194: *> \endverbatim
  195: *>
  196: *> \param[out] RWORK
  197: *> \verbatim
  198: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  199: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  200: *>          If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
  201: *>          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  202: *>          define the matrix in intermediate bidiagonal-block form
  203: *>          remaining after nonconvergence. INFO specifies the number
  204: *>          of nonzero PHI's.
  205: *> \endverbatim
  206: *>
  207: *> \param[in] LRWORK
  208: *> \verbatim
  209: *>          LRWORK is INTEGER
  210: *>          The dimension of the array RWORK.
  211: *> 
  212: *>          If LRWORK = -1, then a workspace query is assumed; the routine
  213: *>          only calculates the optimal size of the RWORK array, returns
  214: *>          this value as the first entry of the work array, and no error
  215: *>          message related to LRWORK is issued by XERBLA.
  216: *> \endverbatim
  217: *
  218: *> \param[out] IWORK
  219: *> \verbatim
  220: *>          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  221: *> \endverbatim
  222: *>
  223: *> \param[out] INFO
  224: *> \verbatim
  225: *>          INFO is INTEGER
  226: *>          = 0:  successful exit.
  227: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  228: *>          > 0:  ZBBCSD did not converge. See the description of WORK
  229: *>                above for details.
  230: *> \endverbatim
  231: *
  232: *> \par References:
  233: *  ================
  234: *>
  235: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  236: *>      Algorithms, 50(1):33-65, 2009.
  237: *
  238: *  Authors:
  239: *  ========
  240: *
  241: *> \author Univ. of Tennessee 
  242: *> \author Univ. of California Berkeley 
  243: *> \author Univ. of Colorado Denver 
  244: *> \author NAG Ltd. 
  245: *
  246: *> \date July 2012
  247: *
  248: *> \ingroup complex16OTHERcomputational
  249: *
  250: *  =====================================================================
  251:       SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  252:      $                       X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  253:      $                       LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  254:      $                       INFO )
  255: *
  256: *  -- LAPACK computational routine (version 3.6.1) --
  257: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  258: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  259: *     July 2012
  260: *
  261: *     .. Scalar Arguments ..
  262:       CHARACTER          JOBU1, JOBU2, JOBV1T
  263:       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  264:      $                   M, P, Q
  265:       INTEGER            LRWORK, LRWORKMIN, LRWORKOPT
  266: *     ..
  267: *     .. Array Arguments ..
  268:       DOUBLE PRECISION   RWORK(*)
  269:       DOUBLE PRECISION   THETA(*)
  270:       COMPLEX*16         U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  271:      $                   X11(LDX11,*), X21(LDX21,*)
  272:       INTEGER            IWORK(*)
  273: *     ..
  274: *  
  275: *  =====================================================================
  276: *
  277: *     .. Parameters ..
  278:       COMPLEX*16         ONE, ZERO
  279:       PARAMETER          ( ONE = (1.0D0,0.0D0), ZERO = (0.0D0,0.0D0) )
  280: *     ..
  281: *     .. Local Scalars ..
  282:       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  283:      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  284:      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  285:      $                   J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  286:      $                   LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  287:      $                   LWORKMIN, LWORKOPT, R
  288:       LOGICAL            LQUERY, WANTU1, WANTU2, WANTV1T
  289: *     ..
  290: *     .. Local Arrays ..
  291:       DOUBLE PRECISION   DUM( 1 )
  292:       COMPLEX*16         CDUM( 1, 1 )
  293: *     ..
  294: *     .. External Subroutines ..
  295:       EXTERNAL           ZBBCSD, ZCOPY, ZLACPY, ZLAPMR, ZLAPMT, ZUNBDB1,
  296:      $                   ZUNBDB2, ZUNBDB3, ZUNBDB4, ZUNGLQ, ZUNGQR,
  297:      $                   XERBLA
  298: *     ..
  299: *     .. External Functions ..
  300:       LOGICAL            LSAME
  301:       EXTERNAL           LSAME
  302: *     ..
  303: *     .. Intrinsic Function ..
  304:       INTRINSIC          INT, MAX, MIN
  305: *     ..
  306: *     .. Executable Statements ..
  307: *
  308: *     Test input arguments
  309: *
  310:       INFO = 0
  311:       WANTU1 = LSAME( JOBU1, 'Y' )
  312:       WANTU2 = LSAME( JOBU2, 'Y' )
  313:       WANTV1T = LSAME( JOBV1T, 'Y' )
  314:       LQUERY = LWORK .EQ. -1
  315: *
  316:       IF( M .LT. 0 ) THEN
  317:          INFO = -4
  318:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  319:          INFO = -5
  320:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  321:          INFO = -6
  322:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  323:          INFO = -8
  324:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  325:          INFO = -10
  326:       ELSE IF( WANTU1 .AND. LDU1 .LT. MAX( 1, P ) ) THEN
  327:          INFO = -13
  328:       ELSE IF( WANTU2 .AND. LDU2 .LT. MAX( 1, M - P ) ) THEN
  329:          INFO = -15
  330:       ELSE IF( WANTV1T .AND. LDV1T .LT. MAX( 1, Q ) ) THEN
  331:          INFO = -17
  332:       END IF
  333: *
  334:       R = MIN( P, M-P, Q, M-Q )
  335: *
  336: *     Compute workspace
  337: *
  338: *       WORK layout:
  339: *     |-----------------------------------------|
  340: *     | LWORKOPT (1)                            |
  341: *     |-----------------------------------------|
  342: *     | TAUP1 (MAX(1,P))                        |
  343: *     | TAUP2 (MAX(1,M-P))                      |
  344: *     | TAUQ1 (MAX(1,Q))                        |
  345: *     |-----------------------------------------|
  346: *     | ZUNBDB WORK | ZUNGQR WORK | ZUNGLQ WORK |
  347: *     |             |             |             |
  348: *     |             |             |             |
  349: *     |             |             |             |
  350: *     |             |             |             |
  351: *     |-----------------------------------------|
  352: *       RWORK layout:
  353: *     |------------------|
  354: *     | LRWORKOPT (1)    |
  355: *     |------------------|
  356: *     | PHI (MAX(1,R-1)) |
  357: *     |------------------|
  358: *     | B11D (R)         |
  359: *     | B11E (R-1)       |
  360: *     | B12D (R)         |
  361: *     | B12E (R-1)       |
  362: *     | B21D (R)         |
  363: *     | B21E (R-1)       |
  364: *     | B22D (R)         |
  365: *     | B22E (R-1)       |
  366: *     | ZBBCSD RWORK     |
  367: *     |------------------|
  368: *
  369:       IF( INFO .EQ. 0 ) THEN
  370:          IPHI = 2
  371:          IB11D = IPHI + MAX( 1, R-1 )
  372:          IB11E = IB11D + MAX( 1, R )
  373:          IB12D = IB11E + MAX( 1, R - 1 )
  374:          IB12E = IB12D + MAX( 1, R )
  375:          IB21D = IB12E + MAX( 1, R - 1 )
  376:          IB21E = IB21D + MAX( 1, R )
  377:          IB22D = IB21E + MAX( 1, R - 1 )
  378:          IB22E = IB22D + MAX( 1, R )
  379:          IBBCSD = IB22E + MAX( 1, R - 1 )
  380:          ITAUP1 = 2
  381:          ITAUP2 = ITAUP1 + MAX( 1, P )
  382:          ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  383:          IORBDB = ITAUQ1 + MAX( 1, Q )
  384:          IORGQR = ITAUQ1 + MAX( 1, Q )
  385:          IORGLQ = ITAUQ1 + MAX( 1, Q )
  386:          LORGQRMIN = 1
  387:          LORGQROPT = 1
  388:          LORGLQMIN = 1
  389:          LORGLQOPT = 1
  390:          IF( R .EQ. Q ) THEN
  391:             CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  392:      $                    CDUM, CDUM, CDUM, WORK, -1, CHILDINFO )
  393:             LORBDB = INT( WORK(1) )
  394:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  395:                CALL ZUNGQR( P, P, Q, U1, LDU1, CDUM, WORK(1), -1,
  396:      $                      CHILDINFO )
  397:                LORGQRMIN = MAX( LORGQRMIN, P )
  398:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  399:             ENDIF
  400:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  401:                CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, CDUM, WORK(1), -1,
  402:      $                      CHILDINFO )
  403:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  404:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  405:             END IF
  406:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  407:                CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T, LDV1T,
  408:      $                      CDUM, WORK(1), -1, CHILDINFO )
  409:                LORGLQMIN = MAX( LORGLQMIN, Q-1 )
  410:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  411:             END IF
  412:             CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  413:      $                   DUM, U1, LDU1, U2, LDU2, V1T, LDV1T, CDUM, 1,
  414:      $                   DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  415:      $                   RWORK(1), -1, CHILDINFO )
  416:             LBBCSD = INT( RWORK(1) )
  417:          ELSE IF( R .EQ. P ) THEN
  418:             CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  419:      $                    CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO )
  420:             LORBDB = INT( WORK(1) )
  421:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  422:                CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, CDUM, WORK(1),
  423:      $                      -1, CHILDINFO )
  424:                LORGQRMIN = MAX( LORGQRMIN, P-1 )
  425:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  426:             END IF
  427:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  428:                CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, CDUM, WORK(1), -1,
  429:      $                      CHILDINFO )
  430:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  431:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  432:             END IF
  433:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  434:                CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, CDUM, WORK(1), -1,
  435:      $                      CHILDINFO )
  436:                LORGLQMIN = MAX( LORGLQMIN, Q )
  437:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  438:             END IF
  439:             CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  440:      $                   DUM, V1T, LDV1T, CDUM, 1, U1, LDU1, U2, LDU2,
  441:      $                   DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  442:      $                   RWORK(1), -1, CHILDINFO )
  443:             LBBCSD = INT( RWORK(1) )
  444:          ELSE IF( R .EQ. M-P ) THEN
  445:             CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  446:      $                    CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO )
  447:             LORBDB = INT( WORK(1) )
  448:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  449:                CALL ZUNGQR( P, P, Q, U1, LDU1, CDUM, WORK(1), -1,
  450:      $                      CHILDINFO )
  451:                LORGQRMIN = MAX( LORGQRMIN, P )
  452:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  453:             END IF
  454:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  455:                CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, CDUM,
  456:      $                      WORK(1), -1, CHILDINFO )
  457:                LORGQRMIN = MAX( LORGQRMIN, M-P-1 )
  458:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  459:             END IF
  460:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  461:                CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, CDUM, WORK(1), -1,
  462:      $                      CHILDINFO )
  463:                LORGLQMIN = MAX( LORGLQMIN, Q )
  464:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  465:             END IF
  466:             CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  467:      $                   THETA, DUM, CDUM, 1, V1T, LDV1T, U2, LDU2, U1,
  468:      $                   LDU1, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  469:      $                   RWORK(1), -1, CHILDINFO )
  470:             LBBCSD = INT( RWORK(1) )
  471:          ELSE
  472:             CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  473:      $                    CDUM, CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO
  474:      $                  )
  475:             LORBDB = M + INT( WORK(1) )
  476:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  477:                CALL ZUNGQR( P, P, M-Q, U1, LDU1, CDUM, WORK(1), -1,
  478:      $                      CHILDINFO )
  479:                LORGQRMIN = MAX( LORGQRMIN, P )
  480:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  481:             END IF
  482:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  483:                CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, CDUM, WORK(1), -1,
  484:      $                      CHILDINFO )
  485:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  486:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  487:             END IF
  488:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  489:                CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, CDUM, WORK(1), -1,
  490:      $                      CHILDINFO )
  491:                LORGLQMIN = MAX( LORGLQMIN, Q )
  492:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  493:             END IF
  494:             CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  495:      $                   THETA, DUM, U2, LDU2, U1, LDU1, CDUM, 1, V1T,
  496:      $                   LDV1T, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  497:      $                   RWORK(1), -1, CHILDINFO )
  498:             LBBCSD = INT( RWORK(1) )
  499:          END IF
  500:          LRWORKMIN = IBBCSD+LBBCSD-1
  501:          LRWORKOPT = LRWORKMIN
  502:          RWORK(1) = LRWORKOPT
  503:          LWORKMIN = MAX( IORBDB+LORBDB-1,
  504:      $                   IORGQR+LORGQRMIN-1,
  505:      $                   IORGLQ+LORGLQMIN-1 )
  506:          LWORKOPT = MAX( IORBDB+LORBDB-1,
  507:      $                   IORGQR+LORGQROPT-1,
  508:      $                   IORGLQ+LORGLQOPT-1 )
  509:          WORK(1) = LWORKOPT
  510:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  511:             INFO = -19
  512:          END IF
  513:       END IF
  514:       IF( INFO .NE. 0 ) THEN
  515:          CALL XERBLA( 'ZUNCSD2BY1', -INFO )
  516:          RETURN
  517:       ELSE IF( LQUERY ) THEN
  518:          RETURN
  519:       END IF
  520:       LORGQR = LWORK-IORGQR+1
  521:       LORGLQ = LWORK-IORGLQ+1
  522: *
  523: *     Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  524: *     in which R = MIN(P,M-P,Q,M-Q)
  525: *
  526:       IF( R .EQ. Q ) THEN
  527: *
  528: *        Case 1: R = Q
  529: *
  530: *        Simultaneously bidiagonalize X11 and X21
  531: *
  532:          CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  533:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  534:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  535: *
  536: *        Accumulate Householder reflectors
  537: *
  538:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  539:             CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  540:             CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  541:      $                   LORGQR, CHILDINFO )
  542:          END IF
  543:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  544:             CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  545:             CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  546:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  547:          END IF
  548:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  549:             V1T(1,1) = ONE
  550:             DO J = 2, Q
  551:                V1T(1,J) = ZERO
  552:                V1T(J,1) = ZERO
  553:             END DO
  554:             CALL ZLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  555:      $                   LDV1T )
  556:             CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  557:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  558:          END IF
  559: *   
  560: *        Simultaneously diagonalize X11 and X21.
  561: *   
  562:          CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  563:      $                RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, CDUM,
  564:      $                1, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  565:      $                RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  566:      $                RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  567:      $                CHILDINFO )
  568: *   
  569: *        Permute rows and columns to place zero submatrices in
  570: *        preferred positions
  571: *
  572:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  573:             DO I = 1, Q
  574:                IWORK(I) = M - P - Q + I
  575:             END DO
  576:             DO I = Q + 1, M - P
  577:                IWORK(I) = I - Q
  578:             END DO
  579:             CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  580:          END IF
  581:       ELSE IF( R .EQ. P ) THEN
  582: *
  583: *        Case 2: R = P
  584: *
  585: *        Simultaneously bidiagonalize X11 and X21
  586: *
  587:          CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  588:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  589:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  590: *
  591: *        Accumulate Householder reflectors
  592: *
  593:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  594:             U1(1,1) = ONE
  595:             DO J = 2, P
  596:                U1(1,J) = ZERO
  597:                U1(J,1) = ZERO
  598:             END DO
  599:             CALL ZLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  600:             CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  601:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  602:          END IF
  603:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  604:             CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  605:             CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  606:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  607:          END IF
  608:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  609:             CALL ZLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  610:             CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  611:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  612:          END IF
  613: *   
  614: *        Simultaneously diagonalize X11 and X21.
  615: *   
  616:          CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  617:      $                RWORK(IPHI), V1T, LDV1T, CDUM, 1, U1, LDU1, U2,
  618:      $                LDU2, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  619:      $                RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  620:      $                RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  621:      $                CHILDINFO )
  622: *   
  623: *        Permute rows and columns to place identity submatrices in
  624: *        preferred positions
  625: *
  626:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  627:             DO I = 1, Q
  628:                IWORK(I) = M - P - Q + I
  629:             END DO
  630:             DO I = Q + 1, M - P
  631:                IWORK(I) = I - Q
  632:             END DO
  633:             CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  634:          END IF
  635:       ELSE IF( R .EQ. M-P ) THEN
  636: *
  637: *        Case 3: R = M-P
  638: *
  639: *        Simultaneously bidiagonalize X11 and X21
  640: *
  641:          CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  642:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  643:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  644: *
  645: *        Accumulate Householder reflectors
  646: *
  647:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  648:             CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  649:             CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  650:      $                   LORGQR, CHILDINFO )
  651:          END IF
  652:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  653:             U2(1,1) = ONE
  654:             DO J = 2, M-P
  655:                U2(1,J) = ZERO
  656:                U2(J,1) = ZERO
  657:             END DO
  658:             CALL ZLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  659:      $                   LDU2 )
  660:             CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  661:      $                   WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  662:          END IF
  663:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  664:             CALL ZLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  665:             CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  666:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  667:          END IF
  668: *   
  669: *        Simultaneously diagonalize X11 and X21.
  670: *   
  671:          CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  672:      $                THETA, RWORK(IPHI), CDUM, 1, V1T, LDV1T, U2, LDU2,
  673:      $                U1, LDU1, RWORK(IB11D), RWORK(IB11E),
  674:      $                RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  675:      $                RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  676:      $                RWORK(IBBCSD), LBBCSD, CHILDINFO )
  677: *   
  678: *        Permute rows and columns to place identity submatrices in
  679: *        preferred positions
  680: *
  681:          IF( Q .GT. R ) THEN
  682:             DO I = 1, R
  683:                IWORK(I) = Q - R + I
  684:             END DO
  685:             DO I = R + 1, Q
  686:                IWORK(I) = I - R
  687:             END DO
  688:             IF( WANTU1 ) THEN
  689:                CALL ZLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  690:             END IF
  691:             IF( WANTV1T ) THEN
  692:                CALL ZLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  693:             END IF
  694:          END IF
  695:       ELSE
  696: *
  697: *        Case 4: R = M-Q
  698: *
  699: *        Simultaneously bidiagonalize X11 and X21
  700: *
  701:          CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  702:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  703:      $                 WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  704:      $                 LORBDB-M, CHILDINFO )
  705: *
  706: *        Accumulate Householder reflectors
  707: *
  708:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  709:             CALL ZCOPY( P, WORK(IORBDB), 1, U1, 1 )
  710:             DO J = 2, P
  711:                U1(1,J) = ZERO
  712:             END DO
  713:             CALL ZLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  714:      $                   LDU1 )
  715:             CALL ZUNGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  716:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  717:          END IF
  718:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  719:             CALL ZCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  720:             DO J = 2, M-P
  721:                U2(1,J) = ZERO
  722:             END DO
  723:             CALL ZLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  724:      $                   LDU2 )
  725:             CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  726:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  727:          END IF
  728:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  729:             CALL ZLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  730:             CALL ZLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  731:      $                   V1T(M-Q+1,M-Q+1), LDV1T )
  732:             CALL ZLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  733:      $                   V1T(P+1,P+1), LDV1T )
  734:             CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  735:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  736:          END IF
  737: *   
  738: *        Simultaneously diagonalize X11 and X21.
  739: *   
  740:          CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  741:      $                THETA, RWORK(IPHI), U2, LDU2, U1, LDU1, CDUM, 1,
  742:      $                V1T, LDV1T, RWORK(IB11D), RWORK(IB11E),
  743:      $                RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  744:      $                RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  745:      $                RWORK(IBBCSD), LBBCSD, CHILDINFO )
  746: *   
  747: *        Permute rows and columns to place identity submatrices in
  748: *        preferred positions
  749: *
  750:          IF( P .GT. R ) THEN
  751:             DO I = 1, R
  752:                IWORK(I) = P - R + I
  753:             END DO
  754:             DO I = R + 1, P
  755:                IWORK(I) = I - R
  756:             END DO
  757:             IF( WANTU1 ) THEN
  758:                CALL ZLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  759:             END IF
  760:             IF( WANTV1T ) THEN
  761:                CALL ZLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  762:             END IF
  763:          END IF
  764:       END IF
  765: *
  766:       RETURN
  767: *
  768: *     End of ZUNCSD2BY1
  769: *
  770:       END
  771: 

CVSweb interface <joel.bertrand@systella.fr>