File:  [local] / rpl / lapack / lapack / zuncsd2by1.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Thu Nov 26 11:44:27 2015 UTC (8 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, HEAD
Mise à jour de Lapack (3.6.0) et du numéro de version du RPL/2.

    1: *> \brief \b ZUNCSD2BY1
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZUNCSD2BY1 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuncsd2by1.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zuncsd2by1.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zuncsd2by1.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
   22: *                              X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
   23: *                              LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
   24: *                              INFO )
   25:    26: *       .. Scalar Arguments ..
   27: *       CHARACTER          JOBU1, JOBU2, JOBV1T
   28: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
   29: *      $                   M, P, Q
   30: *       INTEGER            LRWORK, LRWORKMIN, LRWORKOPT
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       DOUBLE PRECISION   RWORK(*)
   34: *       DOUBLE PRECISION   THETA(*)
   35: *       COMPLEX*16         U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
   36: *      $                   X11(LDX11,*), X21(LDX21,*)
   37: *       INTEGER            IWORK(*)
   38: *       ..
   39: *    
   40:    41: *> \par Purpose:
   42: *> =============
   43: *>
   44: *>\verbatim
   45: *>
   46: *> ZUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
   47: *> orthonormal columns that has been partitioned into a 2-by-1 block
   48: *> structure:
   49: *>
   50: *>                                [  I  0  0 ]
   51: *>                                [  0  C  0 ]
   52: *>          [ X11 ]   [ U1 |    ] [  0  0  0 ]
   53: *>      X = [-----] = [---------] [----------] V1**T .
   54: *>          [ X21 ]   [    | U2 ] [  0  0  0 ]
   55: *>                                [  0  S  0 ]
   56: *>                                [  0  0  I ]
   57: *> 
   58: *> X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P,
   59: *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
   60: *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
   61: *> R = MIN(P,M-P,Q,M-Q).
   62: *> \endverbatim
   63: *
   64: *  Arguments:
   65: *  ==========
   66: *
   67: *> \param[in] JOBU1
   68: *> \verbatim
   69: *>          JOBU1 is CHARACTER
   70: *>          = 'Y':      U1 is computed;
   71: *>          otherwise:  U1 is not computed.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] JOBU2
   75: *> \verbatim
   76: *>          JOBU2 is CHARACTER
   77: *>          = 'Y':      U2 is computed;
   78: *>          otherwise:  U2 is not computed.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] JOBV1T
   82: *> \verbatim
   83: *>          JOBV1T is CHARACTER
   84: *>          = 'Y':      V1T is computed;
   85: *>          otherwise:  V1T is not computed.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] M
   89: *> \verbatim
   90: *>          M is INTEGER
   91: *>          The number of rows in X.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] P
   95: *> \verbatim
   96: *>          P is INTEGER
   97: *>          The number of rows in X11. 0 <= P <= M.
   98: *> \endverbatim
   99: *>
  100: *> \param[in] Q
  101: *> \verbatim
  102: *>          Q is INTEGER
  103: *>          The number of columns in X11 and X21. 0 <= Q <= M.
  104: *> \endverbatim
  105: *>
  106: *> \param[in,out] X11
  107: *> \verbatim
  108: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
  109: *>          On entry, part of the unitary matrix whose CSD is desired.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDX11
  113: *> \verbatim
  114: *>          LDX11 is INTEGER
  115: *>          The leading dimension of X11. LDX11 >= MAX(1,P).
  116: *> \endverbatim
  117: *>
  118: *> \param[in,out] X21
  119: *> \verbatim
  120: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
  121: *>          On entry, part of the unitary matrix whose CSD is desired.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] LDX21
  125: *> \verbatim
  126: *>          LDX21 is INTEGER
  127: *>          The leading dimension of X21. LDX21 >= MAX(1,M-P).
  128: *> \endverbatim
  129: *>
  130: *> \param[out] THETA
  131: *> \verbatim
  132: *>          THETA is DOUBLE PRECISION array, dimension (R), in which R =
  133: *>          MIN(P,M-P,Q,M-Q).
  134: *>          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  135: *>          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  136: *> \endverbatim
  137: *>
  138: *> \param[out] U1
  139: *> \verbatim
  140: *>          U1 is COMPLEX*16 array, dimension (P)
  141: *>          If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
  142: *> \endverbatim
  143: *>
  144: *> \param[in] LDU1
  145: *> \verbatim
  146: *>          LDU1 is INTEGER
  147: *>          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  148: *>          MAX(1,P).
  149: *> \endverbatim
  150: *>
  151: *> \param[out] U2
  152: *> \verbatim
  153: *>          U2 is COMPLEX*16 array, dimension (M-P)
  154: *>          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
  155: *>          matrix U2.
  156: *> \endverbatim
  157: *>
  158: *> \param[in] LDU2
  159: *> \verbatim
  160: *>          LDU2 is INTEGER
  161: *>          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  162: *>          MAX(1,M-P).
  163: *> \endverbatim
  164: *>
  165: *> \param[out] V1T
  166: *> \verbatim
  167: *>          V1T is COMPLEX*16 array, dimension (Q)
  168: *>          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
  169: *>          matrix V1**T.
  170: *> \endverbatim
  171: *>
  172: *> \param[in] LDV1T
  173: *> \verbatim
  174: *>          LDV1T is INTEGER
  175: *>          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  176: *>          MAX(1,Q).
  177: *> \endverbatim
  178: *>
  179: *> \param[out] WORK
  180: *> \verbatim
  181: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  182: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  183: *> \endverbatim
  184: *>
  185: *> \param[in] LWORK
  186: *> \verbatim
  187: *>          LWORK is INTEGER
  188: *>          The dimension of the array WORK.
  189: *>
  190: *>          If LWORK = -1, then a workspace query is assumed; the routine
  191: *>          only calculates the optimal size of the WORK array, returns
  192: *>          this value as the first entry of the work array, and no error
  193: *>          message related to LWORK is issued by XERBLA.
  194: *> \endverbatim
  195: *>
  196: *> \param[out] RWORK
  197: *> \verbatim
  198: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  199: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  200: *>          If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
  201: *>          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  202: *>          define the matrix in intermediate bidiagonal-block form
  203: *>          remaining after nonconvergence. INFO specifies the number
  204: *>          of nonzero PHI's.
  205: *> \endverbatim
  206: *>
  207: *> \param[in] LRWORK
  208: *> \verbatim
  209: *>          LRWORK is INTEGER
  210: *>          The dimension of the array RWORK.
  211: *> 
  212: *>          If LRWORK = -1, then a workspace query is assumed; the routine
  213: *>          only calculates the optimal size of the RWORK array, returns
  214: *>          this value as the first entry of the work array, and no error
  215: *>          message related to LRWORK is issued by XERBLA.
  216: *> \endverbatim
  217: *
  218: *> \param[out] IWORK
  219: *> \verbatim
  220: *>          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  221: *> \endverbatim
  222: *>
  223: *> \param[out] INFO
  224: *> \verbatim
  225: *>          INFO is INTEGER
  226: *>          = 0:  successful exit.
  227: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  228: *>          > 0:  ZBBCSD did not converge. See the description of WORK
  229: *>                above for details.
  230: *> \endverbatim
  231: *
  232: *> \par References:
  233: *  ================
  234: *>
  235: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  236: *>      Algorithms, 50(1):33-65, 2009.
  237: *
  238: *  Authors:
  239: *  ========
  240: *
  241: *> \author Univ. of Tennessee 
  242: *> \author Univ. of California Berkeley 
  243: *> \author Univ. of Colorado Denver 
  244: *> \author NAG Ltd. 
  245: *
  246: *> \date July 2012
  247: *
  248: *> \ingroup complex16OTHERcomputational
  249: *
  250: *  =====================================================================
  251:       SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  252:      $                       X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  253:      $                       LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  254:      $                       INFO )
  255: *
  256: *  -- LAPACK computational routine (version 3.6.0) --
  257: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  258: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  259: *     July 2012
  260: *
  261: *     .. Scalar Arguments ..
  262:       CHARACTER          JOBU1, JOBU2, JOBV1T
  263:       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  264:      $                   M, P, Q
  265:       INTEGER            LRWORK, LRWORKMIN, LRWORKOPT
  266: *     ..
  267: *     .. Array Arguments ..
  268:       DOUBLE PRECISION   RWORK(*)
  269:       DOUBLE PRECISION   THETA(*)
  270:       COMPLEX*16         U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  271:      $                   X11(LDX11,*), X21(LDX21,*)
  272:       INTEGER            IWORK(*)
  273: *     ..
  274: *  
  275: *  =====================================================================
  276: *
  277: *     .. Parameters ..
  278:       COMPLEX*16         ONE, ZERO
  279:       PARAMETER          ( ONE = (1.0D0,0.0D0), ZERO = (0.0D0,0.0D0) )
  280: *     ..
  281: *     .. Local Scalars ..
  282:       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  283:      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  284:      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  285:      $                   J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  286:      $                   LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  287:      $                   LWORKMIN, LWORKOPT, R
  288:       LOGICAL            LQUERY, WANTU1, WANTU2, WANTV1T
  289: *     ..
  290: *     .. External Subroutines ..
  291:       EXTERNAL           ZBBCSD, ZCOPY, ZLACPY, ZLAPMR, ZLAPMT, ZUNBDB1,
  292:      $                   ZUNBDB2, ZUNBDB3, ZUNBDB4, ZUNGLQ, ZUNGQR,
  293:      $                   XERBLA
  294: *     ..
  295: *     .. External Functions ..
  296:       LOGICAL            LSAME
  297:       EXTERNAL           LSAME
  298: *     ..
  299: *     .. Intrinsic Function ..
  300:       INTRINSIC          INT, MAX, MIN
  301: *     ..
  302: *     .. Executable Statements ..
  303: *
  304: *     Test input arguments
  305: *
  306:       INFO = 0
  307:       WANTU1 = LSAME( JOBU1, 'Y' )
  308:       WANTU2 = LSAME( JOBU2, 'Y' )
  309:       WANTV1T = LSAME( JOBV1T, 'Y' )
  310:       LQUERY = LWORK .EQ. -1
  311: *
  312:       IF( M .LT. 0 ) THEN
  313:          INFO = -4
  314:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  315:          INFO = -5
  316:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  317:          INFO = -6
  318:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  319:          INFO = -8
  320:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  321:          INFO = -10
  322:       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  323:          INFO = -13
  324:       ELSE IF( WANTU2 .AND. LDU2 .LT. M - P ) THEN
  325:          INFO = -15
  326:       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  327:          INFO = -17
  328:       END IF
  329: *
  330:       R = MIN( P, M-P, Q, M-Q )
  331: *
  332: *     Compute workspace
  333: *
  334: *       WORK layout:
  335: *     |-----------------------------------------|
  336: *     | LWORKOPT (1)                            |
  337: *     |-----------------------------------------|
  338: *     | TAUP1 (MAX(1,P))                        |
  339: *     | TAUP2 (MAX(1,M-P))                      |
  340: *     | TAUQ1 (MAX(1,Q))                        |
  341: *     |-----------------------------------------|
  342: *     | ZUNBDB WORK | ZUNGQR WORK | ZUNGLQ WORK |
  343: *     |             |             |             |
  344: *     |             |             |             |
  345: *     |             |             |             |
  346: *     |             |             |             |
  347: *     |-----------------------------------------|
  348: *       RWORK layout:
  349: *     |------------------|
  350: *     | LRWORKOPT (1)    |
  351: *     |------------------|
  352: *     | PHI (MAX(1,R-1)) |
  353: *     |------------------|
  354: *     | B11D (R)         |
  355: *     | B11E (R-1)       |
  356: *     | B12D (R)         |
  357: *     | B12E (R-1)       |
  358: *     | B21D (R)         |
  359: *     | B21E (R-1)       |
  360: *     | B22D (R)         |
  361: *     | B22E (R-1)       |
  362: *     | ZBBCSD RWORK     |
  363: *     |------------------|
  364: *
  365:       IF( INFO .EQ. 0 ) THEN
  366:          IPHI = 2
  367:          IB11D = IPHI + MAX( 1, R-1 )
  368:          IB11E = IB11D + MAX( 1, R )
  369:          IB12D = IB11E + MAX( 1, R - 1 )
  370:          IB12E = IB12D + MAX( 1, R )
  371:          IB21D = IB12E + MAX( 1, R - 1 )
  372:          IB21E = IB21D + MAX( 1, R )
  373:          IB22D = IB21E + MAX( 1, R - 1 )
  374:          IB22E = IB22D + MAX( 1, R )
  375:          IBBCSD = IB22E + MAX( 1, R - 1 )
  376:          ITAUP1 = 2
  377:          ITAUP2 = ITAUP1 + MAX( 1, P )
  378:          ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  379:          IORBDB = ITAUQ1 + MAX( 1, Q )
  380:          IORGQR = ITAUQ1 + MAX( 1, Q )
  381:          IORGLQ = ITAUQ1 + MAX( 1, Q )
  382:          IF( R .EQ. Q ) THEN
  383:             CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  384:      $                    0, 0, WORK, -1, CHILDINFO )
  385:             LORBDB = INT( WORK(1) )
  386:             IF( P .GE. M-P ) THEN
  387:                CALL ZUNGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
  388:      $                      CHILDINFO )
  389:                LORGQRMIN = MAX( 1, P )
  390:                LORGQROPT = INT( WORK(1) )
  391:             ELSE
  392:                CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
  393:      $                      CHILDINFO )
  394:                LORGQRMIN = MAX( 1, M-P )
  395:                LORGQROPT = INT( WORK(1) )
  396:             END IF
  397:             CALL ZUNGLQ( MAX(0,Q-1), MAX(0,Q-1), MAX(0,Q-1), V1T, LDV1T,
  398:      $                   0, WORK(1), -1, CHILDINFO )
  399:             LORGLQMIN = MAX( 1, Q-1 )
  400:             LORGLQOPT = INT( WORK(1) )
  401:             CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  402:      $                   0, U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1, 0, 0,
  403:      $                   0, 0, 0, 0, 0, 0, RWORK(1), -1, CHILDINFO )
  404:             LBBCSD = INT( RWORK(1) )
  405:          ELSE IF( R .EQ. P ) THEN
  406:             CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  407:      $                    0, 0, WORK(1), -1, CHILDINFO )
  408:             LORBDB = INT( WORK(1) )
  409:             IF( P-1 .GE. M-P ) THEN
  410:                CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, 0, WORK(1),
  411:      $                      -1, CHILDINFO )
  412:                LORGQRMIN = MAX( 1, P-1 )
  413:                LORGQROPT = INT( WORK(1) )
  414:             ELSE
  415:                CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
  416:      $                      CHILDINFO )
  417:                LORGQRMIN = MAX( 1, M-P )
  418:                LORGQROPT = INT( WORK(1) )
  419:             END IF
  420:             CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
  421:      $                   CHILDINFO )
  422:             LORGLQMIN = MAX( 1, Q )
  423:             LORGLQOPT = INT( WORK(1) )
  424:             CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  425:      $                   0, V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2, 0, 0,
  426:      $                   0, 0, 0, 0, 0, 0, RWORK(1), -1, CHILDINFO )
  427:             LBBCSD = INT( RWORK(1) )
  428:          ELSE IF( R .EQ. M-P ) THEN
  429:             CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  430:      $                    0, 0, WORK(1), -1, CHILDINFO )
  431:             LORBDB = INT( WORK(1) )
  432:             IF( P .GE. M-P-1 ) THEN
  433:                CALL ZUNGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
  434:      $                      CHILDINFO )
  435:                LORGQRMIN = MAX( 1, P )
  436:                LORGQROPT = INT( WORK(1) )
  437:             ELSE
  438:                CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, 0,
  439:      $                      WORK(1), -1, CHILDINFO )
  440:                LORGQRMIN = MAX( 1, M-P-1 )
  441:                LORGQROPT = INT( WORK(1) )
  442:             END IF
  443:             CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
  444:      $                   CHILDINFO )
  445:             LORGLQMIN = MAX( 1, Q )
  446:             LORGLQOPT = INT( WORK(1) )
  447:             CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  448:      $                   THETA, 0, 0, 1, V1T, LDV1T, U2, LDU2, U1, LDU1,
  449:      $                   0, 0, 0, 0, 0, 0, 0, 0, RWORK(1), -1,
  450:      $                   CHILDINFO )
  451:             LBBCSD = INT( RWORK(1) )
  452:          ELSE
  453:             CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  454:      $                    0, 0, 0, WORK(1), -1, CHILDINFO )
  455:             LORBDB = M + INT( WORK(1) )
  456:             IF( P .GE. M-P ) THEN
  457:                CALL ZUNGQR( P, P, M-Q, U1, LDU1, 0, WORK(1), -1,
  458:      $                      CHILDINFO )
  459:                LORGQRMIN = MAX( 1, P )
  460:                LORGQROPT = INT( WORK(1) )
  461:             ELSE
  462:                CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, 0, WORK(1), -1,
  463:      $                      CHILDINFO )
  464:                LORGQRMIN = MAX( 1, M-P )
  465:                LORGQROPT = INT( WORK(1) )
  466:             END IF
  467:             CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, 0, WORK(1), -1,
  468:      $                   CHILDINFO )
  469:             LORGLQMIN = MAX( 1, Q )
  470:             LORGLQOPT = INT( WORK(1) )
  471:             CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  472:      $                   THETA, 0, U2, LDU2, U1, LDU1, 0, 1, V1T, LDV1T,
  473:      $                   0, 0, 0, 0, 0, 0, 0, 0, RWORK(1), -1,
  474:      $                   CHILDINFO )
  475:             LBBCSD = INT( RWORK(1) )
  476:          END IF
  477:          LRWORKMIN = IBBCSD+LBBCSD-1
  478:          LRWORKOPT = LRWORKMIN
  479:          RWORK(1) = LRWORKOPT
  480:          LWORKMIN = MAX( IORBDB+LORBDB-1,
  481:      $                   IORGQR+LORGQRMIN-1,
  482:      $                   IORGLQ+LORGLQMIN-1 )
  483:          LWORKOPT = MAX( IORBDB+LORBDB-1,
  484:      $                   IORGQR+LORGQROPT-1,
  485:      $                   IORGLQ+LORGLQOPT-1 )
  486:          WORK(1) = LWORKOPT
  487:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  488:             INFO = -19
  489:          END IF
  490:       END IF
  491:       IF( INFO .NE. 0 ) THEN
  492:          CALL XERBLA( 'ZUNCSD2BY1', -INFO )
  493:          RETURN
  494:       ELSE IF( LQUERY ) THEN
  495:          RETURN
  496:       END IF
  497:       LORGQR = LWORK-IORGQR+1
  498:       LORGLQ = LWORK-IORGLQ+1
  499: *
  500: *     Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  501: *     in which R = MIN(P,M-P,Q,M-Q)
  502: *
  503:       IF( R .EQ. Q ) THEN
  504: *
  505: *        Case 1: R = Q
  506: *
  507: *        Simultaneously bidiagonalize X11 and X21
  508: *
  509:          CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  510:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  511:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  512: *
  513: *        Accumulate Householder reflectors
  514: *
  515:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  516:             CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  517:             CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  518:      $                   LORGQR, CHILDINFO )
  519:          END IF
  520:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  521:             CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  522:             CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  523:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  524:          END IF
  525:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  526:             V1T(1,1) = ONE
  527:             DO J = 2, Q
  528:                V1T(1,J) = ZERO
  529:                V1T(J,1) = ZERO
  530:             END DO
  531:             CALL ZLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  532:      $                   LDV1T )
  533:             CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  534:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  535:          END IF
  536: *   
  537: *        Simultaneously diagonalize X11 and X21.
  538: *   
  539:          CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  540:      $                RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1,
  541:      $                RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  542:      $                RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  543:      $                RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  544:      $                CHILDINFO )
  545: *   
  546: *        Permute rows and columns to place zero submatrices in
  547: *        preferred positions
  548: *
  549:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  550:             DO I = 1, Q
  551:                IWORK(I) = M - P - Q + I
  552:             END DO
  553:             DO I = Q + 1, M - P
  554:                IWORK(I) = I - Q
  555:             END DO
  556:             CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  557:          END IF
  558:       ELSE IF( R .EQ. P ) THEN
  559: *
  560: *        Case 2: R = P
  561: *
  562: *        Simultaneously bidiagonalize X11 and X21
  563: *
  564:          CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  565:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  566:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  567: *
  568: *        Accumulate Householder reflectors
  569: *
  570:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  571:             U1(1,1) = ONE
  572:             DO J = 2, P
  573:                U1(1,J) = ZERO
  574:                U1(J,1) = ZERO
  575:             END DO
  576:             CALL ZLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  577:             CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  578:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  579:          END IF
  580:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  581:             CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  582:             CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  583:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  584:          END IF
  585:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  586:             CALL ZLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  587:             CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  588:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  589:          END IF
  590: *   
  591: *        Simultaneously diagonalize X11 and X21.
  592: *   
  593:          CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  594:      $                RWORK(IPHI), V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2,
  595:      $                RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  596:      $                RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  597:      $                RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  598:      $                CHILDINFO )
  599: *   
  600: *        Permute rows and columns to place identity submatrices in
  601: *        preferred positions
  602: *
  603:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  604:             DO I = 1, Q
  605:                IWORK(I) = M - P - Q + I
  606:             END DO
  607:             DO I = Q + 1, M - P
  608:                IWORK(I) = I - Q
  609:             END DO
  610:             CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  611:          END IF
  612:       ELSE IF( R .EQ. M-P ) THEN
  613: *
  614: *        Case 3: R = M-P
  615: *
  616: *        Simultaneously bidiagonalize X11 and X21
  617: *
  618:          CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  619:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  620:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  621: *
  622: *        Accumulate Householder reflectors
  623: *
  624:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  625:             CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  626:             CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  627:      $                   LORGQR, CHILDINFO )
  628:          END IF
  629:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  630:             U2(1,1) = ONE
  631:             DO J = 2, M-P
  632:                U2(1,J) = ZERO
  633:                U2(J,1) = ZERO
  634:             END DO
  635:             CALL ZLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  636:      $                   LDU2 )
  637:             CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  638:      $                   WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  639:          END IF
  640:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  641:             CALL ZLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  642:             CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  643:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  644:          END IF
  645: *   
  646: *        Simultaneously diagonalize X11 and X21.
  647: *   
  648:          CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  649:      $                THETA, RWORK(IPHI), 0, 1, V1T, LDV1T, U2, LDU2,
  650:      $                U1, LDU1, RWORK(IB11D), RWORK(IB11E),
  651:      $                RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  652:      $                RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  653:      $                RWORK(IBBCSD), LBBCSD, CHILDINFO )
  654: *   
  655: *        Permute rows and columns to place identity submatrices in
  656: *        preferred positions
  657: *
  658:          IF( Q .GT. R ) THEN
  659:             DO I = 1, R
  660:                IWORK(I) = Q - R + I
  661:             END DO
  662:             DO I = R + 1, Q
  663:                IWORK(I) = I - R
  664:             END DO
  665:             IF( WANTU1 ) THEN
  666:                CALL ZLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  667:             END IF
  668:             IF( WANTV1T ) THEN
  669:                CALL ZLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  670:             END IF
  671:          END IF
  672:       ELSE
  673: *
  674: *        Case 4: R = M-Q
  675: *
  676: *        Simultaneously bidiagonalize X11 and X21
  677: *
  678:          CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  679:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  680:      $                 WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  681:      $                 LORBDB-M, CHILDINFO )
  682: *
  683: *        Accumulate Householder reflectors
  684: *
  685:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  686:             CALL ZCOPY( P, WORK(IORBDB), 1, U1, 1 )
  687:             DO J = 2, P
  688:                U1(1,J) = ZERO
  689:             END DO
  690:             CALL ZLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  691:      $                   LDU1 )
  692:             CALL ZUNGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  693:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  694:          END IF
  695:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  696:             CALL ZCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  697:             DO J = 2, M-P
  698:                U2(1,J) = ZERO
  699:             END DO
  700:             CALL ZLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  701:      $                   LDU2 )
  702:             CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  703:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  704:          END IF
  705:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  706:             CALL ZLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  707:             CALL ZLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  708:      $                   V1T(M-Q+1,M-Q+1), LDV1T )
  709:             CALL ZLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  710:      $                   V1T(P+1,P+1), LDV1T )
  711:             CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  712:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  713:          END IF
  714: *   
  715: *        Simultaneously diagonalize X11 and X21.
  716: *   
  717:          CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  718:      $                THETA, RWORK(IPHI), U2, LDU2, U1, LDU1, 0, 1, V1T,
  719:      $                LDV1T, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  720:      $                RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  721:      $                RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  722:      $                CHILDINFO )
  723: *   
  724: *        Permute rows and columns to place identity submatrices in
  725: *        preferred positions
  726: *
  727:          IF( P .GT. R ) THEN
  728:             DO I = 1, R
  729:                IWORK(I) = P - R + I
  730:             END DO
  731:             DO I = R + 1, P
  732:                IWORK(I) = I - R
  733:             END DO
  734:             IF( WANTU1 ) THEN
  735:                CALL ZLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  736:             END IF
  737:             IF( WANTV1T ) THEN
  738:                CALL ZLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  739:             END IF
  740:          END IF
  741:       END IF
  742: *
  743:       RETURN
  744: *
  745: *     End of ZUNCSD2BY1
  746: *
  747:       END
  748: 

CVSweb interface <joel.bertrand@systella.fr>