File:  [local] / rpl / lapack / lapack / zuncsd2by1.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:24:37 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack vers la version 3.5.0.

    1: *> \brief \b ZUNCSD2BY1
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZUNCSD2BY1 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuncsd2by1.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zuncsd2by1.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zuncsd2by1.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
   22: *                              X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
   23: *                              LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
   24: *                              INFO )
   25:    26: *       .. Scalar Arguments ..
   27: *       CHARACTER          JOBU1, JOBU2, JOBV1T
   28: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
   29: *      $                   M, P, Q
   30: *       INTEGER            LRWORK, LRWORKMIN, LRWORKOPT
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       DOUBLE PRECISION   RWORK(*)
   34: *       DOUBLE PRECISION   THETA(*)
   35: *       COMPLEX*16         U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
   36: *      $                   X11(LDX11,*), X21(LDX21,*)
   37: *       INTEGER            IWORK(*)
   38: *       ..
   39: *    
   40:    41: *> \par Purpose:
   42: *> =============
   43: *>
   44: *>\verbatim
   45: *>
   46: *> ZUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
   47: *> orthonormal columns that has been partitioned into a 2-by-1 block
   48: *> structure:
   49: *>
   50: *>                                [  I  0  0 ]
   51: *>                                [  0  C  0 ]
   52: *>          [ X11 ]   [ U1 |    ] [  0  0  0 ]
   53: *>      X = [-----] = [---------] [----------] V1**T .
   54: *>          [ X21 ]   [    | U2 ] [  0  0  0 ]
   55: *>                                [  0  S  0 ]
   56: *>                                [  0  0  I ]
   57: *> 
   58: *> X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P,
   59: *> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
   60: *> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
   61: *> which R = MIN(P,M-P,Q,M-Q).
   62: *>
   63: *>\endverbatim
   64: *
   65: *  Arguments:
   66: *  ==========
   67: *
   68: *> \param[in] JOBU1
   69: *> \verbatim
   70: *>          JOBU1 is CHARACTER
   71: *>           = 'Y':      U1 is computed;
   72: *>           otherwise:  U1 is not computed.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] JOBU2
   76: *> \verbatim
   77: *>          JOBU2 is CHARACTER
   78: *>           = 'Y':      U2 is computed;
   79: *>           otherwise:  U2 is not computed.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] JOBV1T
   83: *> \verbatim
   84: *>          JOBV1T is CHARACTER
   85: *>           = 'Y':      V1T is computed;
   86: *>           otherwise:  V1T is not computed.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] M
   90: *> \verbatim
   91: *>          M is INTEGER
   92: *>           The number of rows and columns in X.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] P
   96: *> \verbatim
   97: *>          P is INTEGER
   98: *>           The number of rows in X11 and X12. 0 <= P <= M.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] Q
  102: *> \verbatim
  103: *>          Q is INTEGER
  104: *>           The number of columns in X11 and X21. 0 <= Q <= M.
  105: *> \endverbatim
  106: *>
  107: *> \param[in,out] X11
  108: *> \verbatim
  109: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
  110: *>           On entry, part of the unitary matrix whose CSD is
  111: *>           desired.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] LDX11
  115: *> \verbatim
  116: *>          LDX11 is INTEGER
  117: *>           The leading dimension of X11. LDX11 >= MAX(1,P).
  118: *> \endverbatim
  119: *>
  120: *> \param[in,out] X21
  121: *> \verbatim
  122: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
  123: *>           On entry, part of the unitary matrix whose CSD is
  124: *>           desired.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] LDX21
  128: *> \verbatim
  129: *>          LDX21 is INTEGER
  130: *>           The leading dimension of X21. LDX21 >= MAX(1,M-P).
  131: *> \endverbatim
  132: *>
  133: *> \param[out] THETA
  134: *> \verbatim
  135: *>          THETA is COMPLEX*16 array, dimension (R), in which R =
  136: *>           MIN(P,M-P,Q,M-Q).
  137: *>           C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  138: *>           S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  139: *> \endverbatim
  140: *>
  141: *> \param[out] U1
  142: *> \verbatim
  143: *>          U1 is COMPLEX*16 array, dimension (P)
  144: *>           If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
  145: *> \endverbatim
  146: *>
  147: *> \param[in] LDU1
  148: *> \verbatim
  149: *>          LDU1 is INTEGER
  150: *>           The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  151: *>           MAX(1,P).
  152: *> \endverbatim
  153: *>
  154: *> \param[out] U2
  155: *> \verbatim
  156: *>          U2 is COMPLEX*16 array, dimension (M-P)
  157: *>           If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
  158: *>           matrix U2.
  159: *> \endverbatim
  160: *>
  161: *> \param[in] LDU2
  162: *> \verbatim
  163: *>          LDU2 is INTEGER
  164: *>           The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  165: *>           MAX(1,M-P).
  166: *> \endverbatim
  167: *>
  168: *> \param[out] V1T
  169: *> \verbatim
  170: *>          V1T is COMPLEX*16 array, dimension (Q)
  171: *>           If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
  172: *>           matrix V1**T.
  173: *> \endverbatim
  174: *>
  175: *> \param[in] LDV1T
  176: *> \verbatim
  177: *>          LDV1T is INTEGER
  178: *>           The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  179: *>           MAX(1,Q).
  180: *> \endverbatim
  181: *>
  182: *> \param[out] WORK
  183: *> \verbatim
  184: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  185: *>           On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  186: *>           If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
  187: *>           ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  188: *>           define the matrix in intermediate bidiagonal-block form
  189: *>           remaining after nonconvergence. INFO specifies the number
  190: *>           of nonzero PHI's.
  191: *> \endverbatim
  192: *>
  193: *> \param[in] LWORK
  194: *> \verbatim
  195: *>          LWORK is INTEGER
  196: *>           The dimension of the array WORK.
  197: *> \endverbatim
  198: *> \verbatim
  199: *>           If LWORK = -1, then a workspace query is assumed; the routine
  200: *>           only calculates the optimal size of the WORK array, returns
  201: *>           this value as the first entry of the work array, and no error
  202: *>           message related to LWORK is issued by XERBLA.
  203: *> \endverbatim
  204: *>
  205: *> \param[out] RWORK
  206: *> \verbatim
  207: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  208: *>           On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  209: *>           If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
  210: *>           ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  211: *>           define the matrix in intermediate bidiagonal-block form
  212: *>           remaining after nonconvergence. INFO specifies the number
  213: *>           of nonzero PHI's.
  214: *> \endverbatim
  215: *>
  216: *> \param[in] LRWORK
  217: *> \verbatim
  218: *>          LRWORK is INTEGER
  219: *>           The dimension of the array RWORK.
  220: *> 
  221: *>           If LRWORK = -1, then a workspace query is assumed; the routine
  222: *>           only calculates the optimal size of the RWORK array, returns
  223: *>           this value as the first entry of the work array, and no error
  224: *>           message related to LRWORK is issued by XERBLA.
  225: *> \param[out] IWORK
  226: *> \verbatim
  227: *>          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  228: *> \endverbatim
  229: *> \endverbatim
  230: *>
  231: *> \param[out] INFO
  232: *> \verbatim
  233: *>          INFO is INTEGER
  234: *>           = 0:  successful exit.
  235: *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
  236: *>           > 0:  ZBBCSD did not converge. See the description of WORK
  237: *>                above for details.
  238: *> \endverbatim
  239: *
  240: *> \par References:
  241: *  ================
  242: *>
  243: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  244: *>      Algorithms, 50(1):33-65, 2009.
  245: *
  246: *  Authors:
  247: *  ========
  248: *
  249: *> \author Univ. of Tennessee 
  250: *> \author Univ. of California Berkeley 
  251: *> \author Univ. of Colorado Denver 
  252: *> \author NAG Ltd. 
  253: *
  254: *> \date July 2012
  255: *
  256: *> \ingroup complex16OTHERcomputational
  257: *
  258: *  =====================================================================
  259:       SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  260:      $                       X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  261:      $                       LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  262:      $                       INFO )
  263: *
  264: *  -- LAPACK computational routine (version 3.5.0) --
  265: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  266: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  267: *     July 2012
  268: *
  269: *     .. Scalar Arguments ..
  270:       CHARACTER          JOBU1, JOBU2, JOBV1T
  271:       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  272:      $                   M, P, Q
  273:       INTEGER            LRWORK, LRWORKMIN, LRWORKOPT
  274: *     ..
  275: *     .. Array Arguments ..
  276:       DOUBLE PRECISION   RWORK(*)
  277:       DOUBLE PRECISION   THETA(*)
  278:       COMPLEX*16         U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  279:      $                   X11(LDX11,*), X21(LDX21,*)
  280:       INTEGER            IWORK(*)
  281: *     ..
  282: *  
  283: *  =====================================================================
  284: *
  285: *     .. Parameters ..
  286:       COMPLEX*16         ONE, ZERO
  287:       PARAMETER          ( ONE = (1.0D0,0.0D0), ZERO = (0.0D0,0.0D0) )
  288: *     ..
  289: *     .. Local Scalars ..
  290:       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  291:      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  292:      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  293:      $                   J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  294:      $                   LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  295:      $                   LWORKMIN, LWORKOPT, R
  296:       LOGICAL            LQUERY, WANTU1, WANTU2, WANTV1T
  297: *     ..
  298: *     .. External Subroutines ..
  299:       EXTERNAL           ZBBCSD, ZCOPY, ZLACPY, ZLAPMR, ZLAPMT, ZUNBDB1,
  300:      $                   ZUNBDB2, ZUNBDB3, ZUNBDB4, ZUNGLQ, ZUNGQR,
  301:      $                   XERBLA
  302: *     ..
  303: *     .. External Functions ..
  304:       LOGICAL            LSAME
  305:       EXTERNAL           LSAME
  306: *     ..
  307: *     .. Intrinsic Function ..
  308:       INTRINSIC          INT, MAX, MIN
  309: *     ..
  310: *     .. Executable Statements ..
  311: *
  312: *     Test input arguments
  313: *
  314:       INFO = 0
  315:       WANTU1 = LSAME( JOBU1, 'Y' )
  316:       WANTU2 = LSAME( JOBU2, 'Y' )
  317:       WANTV1T = LSAME( JOBV1T, 'Y' )
  318:       LQUERY = LWORK .EQ. -1
  319: *
  320:       IF( M .LT. 0 ) THEN
  321:          INFO = -4
  322:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  323:          INFO = -5
  324:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  325:          INFO = -6
  326:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  327:          INFO = -8
  328:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  329:          INFO = -10
  330:       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  331:          INFO = -13
  332:       ELSE IF( WANTU2 .AND. LDU2 .LT. M - P ) THEN
  333:          INFO = -15
  334:       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  335:          INFO = -17
  336:       END IF
  337: *
  338:       R = MIN( P, M-P, Q, M-Q )
  339: *
  340: *     Compute workspace
  341: *
  342: *       WORK layout:
  343: *     |-----------------------------------------|
  344: *     | LWORKOPT (1)                            |
  345: *     |-----------------------------------------|
  346: *     | TAUP1 (MAX(1,P))                        |
  347: *     | TAUP2 (MAX(1,M-P))                      |
  348: *     | TAUQ1 (MAX(1,Q))                        |
  349: *     |-----------------------------------------|
  350: *     | ZUNBDB WORK | ZUNGQR WORK | ZUNGLQ WORK |
  351: *     |             |             |             |
  352: *     |             |             |             |
  353: *     |             |             |             |
  354: *     |             |             |             |
  355: *     |-----------------------------------------|
  356: *       RWORK layout:
  357: *     |------------------|
  358: *     | LRWORKOPT (1)    |
  359: *     |------------------|
  360: *     | PHI (MAX(1,R-1)) |
  361: *     |------------------|
  362: *     | B11D (R)         |
  363: *     | B11E (R-1)       |
  364: *     | B12D (R)         |
  365: *     | B12E (R-1)       |
  366: *     | B21D (R)         |
  367: *     | B21E (R-1)       |
  368: *     | B22D (R)         |
  369: *     | B22E (R-1)       |
  370: *     | ZBBCSD RWORK     |
  371: *     |------------------|
  372: *
  373:       IF( INFO .EQ. 0 ) THEN
  374:          IPHI = 2
  375:          IB11D = IPHI + MAX( 1, R-1 )
  376:          IB11E = IB11D + MAX( 1, R )
  377:          IB12D = IB11E + MAX( 1, R - 1 )
  378:          IB12E = IB12D + MAX( 1, R )
  379:          IB21D = IB12E + MAX( 1, R - 1 )
  380:          IB21E = IB21D + MAX( 1, R )
  381:          IB22D = IB21E + MAX( 1, R - 1 )
  382:          IB22E = IB22D + MAX( 1, R )
  383:          IBBCSD = IB22E + MAX( 1, R - 1 )
  384:          ITAUP1 = 2
  385:          ITAUP2 = ITAUP1 + MAX( 1, P )
  386:          ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  387:          IORBDB = ITAUQ1 + MAX( 1, Q )
  388:          IORGQR = ITAUQ1 + MAX( 1, Q )
  389:          IORGLQ = ITAUQ1 + MAX( 1, Q )
  390:          IF( R .EQ. Q ) THEN
  391:             CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  392:      $                    0, 0, WORK, -1, CHILDINFO )
  393:             LORBDB = INT( WORK(1) )
  394:             IF( P .GE. M-P ) THEN
  395:                CALL ZUNGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
  396:      $                      CHILDINFO )
  397:                LORGQRMIN = MAX( 1, P )
  398:                LORGQROPT = INT( WORK(1) )
  399:             ELSE
  400:                CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
  401:      $                      CHILDINFO )
  402:                LORGQRMIN = MAX( 1, M-P )
  403:                LORGQROPT = INT( WORK(1) )
  404:             END IF
  405:             CALL ZUNGLQ( MAX(0,Q-1), MAX(0,Q-1), MAX(0,Q-1), V1T, LDV1T,
  406:      $                   0, WORK(1), -1, CHILDINFO )
  407:             LORGLQMIN = MAX( 1, Q-1 )
  408:             LORGLQOPT = INT( WORK(1) )
  409:             CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  410:      $                   0, U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1, 0, 0,
  411:      $                   0, 0, 0, 0, 0, 0, RWORK(1), -1, CHILDINFO )
  412:             LBBCSD = INT( RWORK(1) )
  413:          ELSE IF( R .EQ. P ) THEN
  414:             CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  415:      $                    0, 0, WORK(1), -1, CHILDINFO )
  416:             LORBDB = INT( WORK(1) )
  417:             IF( P-1 .GE. M-P ) THEN
  418:                CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, 0, WORK(1),
  419:      $                      -1, CHILDINFO )
  420:                LORGQRMIN = MAX( 1, P-1 )
  421:                LORGQROPT = INT( WORK(1) )
  422:             ELSE
  423:                CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
  424:      $                      CHILDINFO )
  425:                LORGQRMIN = MAX( 1, M-P )
  426:                LORGQROPT = INT( WORK(1) )
  427:             END IF
  428:             CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
  429:      $                   CHILDINFO )
  430:             LORGLQMIN = MAX( 1, Q )
  431:             LORGLQOPT = INT( WORK(1) )
  432:             CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  433:      $                   0, V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2, 0, 0,
  434:      $                   0, 0, 0, 0, 0, 0, RWORK(1), -1, CHILDINFO )
  435:             LBBCSD = INT( RWORK(1) )
  436:          ELSE IF( R .EQ. M-P ) THEN
  437:             CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  438:      $                    0, 0, WORK(1), -1, CHILDINFO )
  439:             LORBDB = INT( WORK(1) )
  440:             IF( P .GE. M-P-1 ) THEN
  441:                CALL ZUNGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
  442:      $                      CHILDINFO )
  443:                LORGQRMIN = MAX( 1, P )
  444:                LORGQROPT = INT( WORK(1) )
  445:             ELSE
  446:                CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, 0,
  447:      $                      WORK(1), -1, CHILDINFO )
  448:                LORGQRMIN = MAX( 1, M-P-1 )
  449:                LORGQROPT = INT( WORK(1) )
  450:             END IF
  451:             CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
  452:      $                   CHILDINFO )
  453:             LORGLQMIN = MAX( 1, Q )
  454:             LORGLQOPT = INT( WORK(1) )
  455:             CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  456:      $                   THETA, 0, 0, 1, V1T, LDV1T, U2, LDU2, U1, LDU1,
  457:      $                   0, 0, 0, 0, 0, 0, 0, 0, RWORK(1), -1,
  458:      $                   CHILDINFO )
  459:             LBBCSD = INT( RWORK(1) )
  460:          ELSE
  461:             CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  462:      $                    0, 0, 0, WORK(1), -1, CHILDINFO )
  463:             LORBDB = M + INT( WORK(1) )
  464:             IF( P .GE. M-P ) THEN
  465:                CALL ZUNGQR( P, P, M-Q, U1, LDU1, 0, WORK(1), -1,
  466:      $                      CHILDINFO )
  467:                LORGQRMIN = MAX( 1, P )
  468:                LORGQROPT = INT( WORK(1) )
  469:             ELSE
  470:                CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, 0, WORK(1), -1,
  471:      $                      CHILDINFO )
  472:                LORGQRMIN = MAX( 1, M-P )
  473:                LORGQROPT = INT( WORK(1) )
  474:             END IF
  475:             CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, 0, WORK(1), -1,
  476:      $                   CHILDINFO )
  477:             LORGLQMIN = MAX( 1, Q )
  478:             LORGLQOPT = INT( WORK(1) )
  479:             CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  480:      $                   THETA, 0, U2, LDU2, U1, LDU1, 0, 1, V1T, LDV1T,
  481:      $                   0, 0, 0, 0, 0, 0, 0, 0, RWORK(1), -1,
  482:      $                   CHILDINFO )
  483:             LBBCSD = INT( RWORK(1) )
  484:          END IF
  485:          LRWORKMIN = IBBCSD+LBBCSD-1
  486:          LRWORKOPT = LRWORKMIN
  487:          RWORK(1) = LRWORKOPT
  488:          LWORKMIN = MAX( IORBDB+LORBDB-1,
  489:      $                   IORGQR+LORGQRMIN-1,
  490:      $                   IORGLQ+LORGLQMIN-1 )
  491:          LWORKOPT = MAX( IORBDB+LORBDB-1,
  492:      $                   IORGQR+LORGQROPT-1,
  493:      $                   IORGLQ+LORGLQOPT-1 )
  494:          WORK(1) = LWORKOPT
  495:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  496:             INFO = -19
  497:          END IF
  498:       END IF
  499:       IF( INFO .NE. 0 ) THEN
  500:          CALL XERBLA( 'ZUNCSD2BY1', -INFO )
  501:          RETURN
  502:       ELSE IF( LQUERY ) THEN
  503:          RETURN
  504:       END IF
  505:       LORGQR = LWORK-IORGQR+1
  506:       LORGLQ = LWORK-IORGLQ+1
  507: *
  508: *     Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  509: *     in which R = MIN(P,M-P,Q,M-Q)
  510: *
  511:       IF( R .EQ. Q ) THEN
  512: *
  513: *        Case 1: R = Q
  514: *
  515: *        Simultaneously bidiagonalize X11 and X21
  516: *
  517:          CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  518:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  519:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  520: *
  521: *        Accumulate Householder reflectors
  522: *
  523:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  524:             CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  525:             CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  526:      $                   LORGQR, CHILDINFO )
  527:          END IF
  528:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  529:             CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  530:             CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  531:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  532:          END IF
  533:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  534:             V1T(1,1) = ONE
  535:             DO J = 2, Q
  536:                V1T(1,J) = ZERO
  537:                V1T(J,1) = ZERO
  538:             END DO
  539:             CALL ZLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  540:      $                   LDV1T )
  541:             CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  542:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  543:          END IF
  544: *   
  545: *        Simultaneously diagonalize X11 and X21.
  546: *   
  547:          CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  548:      $                RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1,
  549:      $                RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  550:      $                RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  551:      $                RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  552:      $                CHILDINFO )
  553: *   
  554: *        Permute rows and columns to place zero submatrices in
  555: *        preferred positions
  556: *
  557:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  558:             DO I = 1, Q
  559:                IWORK(I) = M - P - Q + I
  560:             END DO
  561:             DO I = Q + 1, M - P
  562:                IWORK(I) = I - Q
  563:             END DO
  564:             CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  565:          END IF
  566:       ELSE IF( R .EQ. P ) THEN
  567: *
  568: *        Case 2: R = P
  569: *
  570: *        Simultaneously bidiagonalize X11 and X21
  571: *
  572:          CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  573:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  574:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  575: *
  576: *        Accumulate Householder reflectors
  577: *
  578:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  579:             U1(1,1) = ONE
  580:             DO J = 2, P
  581:                U1(1,J) = ZERO
  582:                U1(J,1) = ZERO
  583:             END DO
  584:             CALL ZLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  585:             CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  586:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  587:          END IF
  588:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  589:             CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  590:             CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  591:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  592:          END IF
  593:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  594:             CALL ZLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  595:             CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  596:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  597:          END IF
  598: *   
  599: *        Simultaneously diagonalize X11 and X21.
  600: *   
  601:          CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  602:      $                RWORK(IPHI), V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2,
  603:      $                RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  604:      $                RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  605:      $                RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  606:      $                CHILDINFO )
  607: *   
  608: *        Permute rows and columns to place identity submatrices in
  609: *        preferred positions
  610: *
  611:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  612:             DO I = 1, Q
  613:                IWORK(I) = M - P - Q + I
  614:             END DO
  615:             DO I = Q + 1, M - P
  616:                IWORK(I) = I - Q
  617:             END DO
  618:             CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  619:          END IF
  620:       ELSE IF( R .EQ. M-P ) THEN
  621: *
  622: *        Case 3: R = M-P
  623: *
  624: *        Simultaneously bidiagonalize X11 and X21
  625: *
  626:          CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  627:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  628:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  629: *
  630: *        Accumulate Householder reflectors
  631: *
  632:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  633:             CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  634:             CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  635:      $                   LORGQR, CHILDINFO )
  636:          END IF
  637:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  638:             U2(1,1) = ONE
  639:             DO J = 2, M-P
  640:                U2(1,J) = ZERO
  641:                U2(J,1) = ZERO
  642:             END DO
  643:             CALL ZLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  644:      $                   LDU2 )
  645:             CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  646:      $                   WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  647:          END IF
  648:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  649:             CALL ZLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  650:             CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  651:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  652:          END IF
  653: *   
  654: *        Simultaneously diagonalize X11 and X21.
  655: *   
  656:          CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  657:      $                THETA, RWORK(IPHI), 0, 1, V1T, LDV1T, U2, LDU2,
  658:      $                U1, LDU1, RWORK(IB11D), RWORK(IB11E),
  659:      $                RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  660:      $                RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  661:      $                RWORK(IBBCSD), LBBCSD, CHILDINFO )
  662: *   
  663: *        Permute rows and columns to place identity submatrices in
  664: *        preferred positions
  665: *
  666:          IF( Q .GT. R ) THEN
  667:             DO I = 1, R
  668:                IWORK(I) = Q - R + I
  669:             END DO
  670:             DO I = R + 1, Q
  671:                IWORK(I) = I - R
  672:             END DO
  673:             IF( WANTU1 ) THEN
  674:                CALL ZLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  675:             END IF
  676:             IF( WANTV1T ) THEN
  677:                CALL ZLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  678:             END IF
  679:          END IF
  680:       ELSE
  681: *
  682: *        Case 4: R = M-Q
  683: *
  684: *        Simultaneously bidiagonalize X11 and X21
  685: *
  686:          CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  687:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  688:      $                 WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  689:      $                 LORBDB-M, CHILDINFO )
  690: *
  691: *        Accumulate Householder reflectors
  692: *
  693:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  694:             CALL ZCOPY( P, WORK(IORBDB), 1, U1, 1 )
  695:             DO J = 2, P
  696:                U1(1,J) = ZERO
  697:             END DO
  698:             CALL ZLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  699:      $                   LDU1 )
  700:             CALL ZUNGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  701:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  702:          END IF
  703:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  704:             CALL ZCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  705:             DO J = 2, M-P
  706:                U2(1,J) = ZERO
  707:             END DO
  708:             CALL ZLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  709:      $                   LDU2 )
  710:             CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  711:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  712:          END IF
  713:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  714:             CALL ZLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  715:             CALL ZLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  716:      $                   V1T(M-Q+1,M-Q+1), LDV1T )
  717:             CALL ZLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  718:      $                   V1T(P+1,P+1), LDV1T )
  719:             CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  720:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  721:          END IF
  722: *   
  723: *        Simultaneously diagonalize X11 and X21.
  724: *   
  725:          CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  726:      $                THETA, RWORK(IPHI), U2, LDU2, U1, LDU1, 0, 1, V1T,
  727:      $                LDV1T, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  728:      $                RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  729:      $                RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  730:      $                CHILDINFO )
  731: *   
  732: *        Permute rows and columns to place identity submatrices in
  733: *        preferred positions
  734: *
  735:          IF( P .GT. R ) THEN
  736:             DO I = 1, R
  737:                IWORK(I) = P - R + I
  738:             END DO
  739:             DO I = R + 1, P
  740:                IWORK(I) = I - R
  741:             END DO
  742:             IF( WANTU1 ) THEN
  743:                CALL ZLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  744:             END IF
  745:             IF( WANTV1T ) THEN
  746:                CALL ZLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  747:             END IF
  748:          END IF
  749:       END IF
  750: *
  751:       RETURN
  752: *
  753: *     End of ZUNCSD2BY1
  754: *
  755:       END
  756: 

CVSweb interface <joel.bertrand@systella.fr>