File:  [local] / rpl / lapack / lapack / zuncsd2by1.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:43 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZUNCSD2BY1
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZUNCSD2BY1 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuncsd2by1.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zuncsd2by1.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zuncsd2by1.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
   22: *                              X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
   23: *                              LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
   24: *                              INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       CHARACTER          JOBU1, JOBU2, JOBV1T
   28: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
   29: *      $                   M, P, Q
   30: *       INTEGER            LRWORK, LRWORKMIN, LRWORKOPT
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       DOUBLE PRECISION   RWORK(*)
   34: *       DOUBLE PRECISION   THETA(*)
   35: *       COMPLEX*16         U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
   36: *      $                   X11(LDX11,*), X21(LDX21,*)
   37: *       INTEGER            IWORK(*)
   38: *       ..
   39: *
   40: *
   41: *> \par Purpose:
   42: *  =============
   43: *>
   44: *>\verbatim
   45: *>
   46: *> ZUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
   47: *> orthonormal columns that has been partitioned into a 2-by-1 block
   48: *> structure:
   49: *>
   50: *>                                [  I1 0  0 ]
   51: *>                                [  0  C  0 ]
   52: *>          [ X11 ]   [ U1 |    ] [  0  0  0 ]
   53: *>      X = [-----] = [---------] [----------] V1**T .
   54: *>          [ X21 ]   [    | U2 ] [  0  0  0 ]
   55: *>                                [  0  S  0 ]
   56: *>                                [  0  0  I2]
   57: *>
   58: *> X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P,
   59: *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
   60: *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
   61: *> R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a
   62: *> K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0).
   63: *> \endverbatim
   64: *
   65: *  Arguments:
   66: *  ==========
   67: *
   68: *> \param[in] JOBU1
   69: *> \verbatim
   70: *>          JOBU1 is CHARACTER
   71: *>          = 'Y':      U1 is computed;
   72: *>          otherwise:  U1 is not computed.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] JOBU2
   76: *> \verbatim
   77: *>          JOBU2 is CHARACTER
   78: *>          = 'Y':      U2 is computed;
   79: *>          otherwise:  U2 is not computed.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] JOBV1T
   83: *> \verbatim
   84: *>          JOBV1T is CHARACTER
   85: *>          = 'Y':      V1T is computed;
   86: *>          otherwise:  V1T is not computed.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] M
   90: *> \verbatim
   91: *>          M is INTEGER
   92: *>          The number of rows in X.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] P
   96: *> \verbatim
   97: *>          P is INTEGER
   98: *>          The number of rows in X11. 0 <= P <= M.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] Q
  102: *> \verbatim
  103: *>          Q is INTEGER
  104: *>          The number of columns in X11 and X21. 0 <= Q <= M.
  105: *> \endverbatim
  106: *>
  107: *> \param[in,out] X11
  108: *> \verbatim
  109: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
  110: *>          On entry, part of the unitary matrix whose CSD is desired.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] LDX11
  114: *> \verbatim
  115: *>          LDX11 is INTEGER
  116: *>          The leading dimension of X11. LDX11 >= MAX(1,P).
  117: *> \endverbatim
  118: *>
  119: *> \param[in,out] X21
  120: *> \verbatim
  121: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
  122: *>          On entry, part of the unitary matrix whose CSD is desired.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LDX21
  126: *> \verbatim
  127: *>          LDX21 is INTEGER
  128: *>          The leading dimension of X21. LDX21 >= MAX(1,M-P).
  129: *> \endverbatim
  130: *>
  131: *> \param[out] THETA
  132: *> \verbatim
  133: *>          THETA is DOUBLE PRECISION array, dimension (R), in which R =
  134: *>          MIN(P,M-P,Q,M-Q).
  135: *>          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  136: *>          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  137: *> \endverbatim
  138: *>
  139: *> \param[out] U1
  140: *> \verbatim
  141: *>          U1 is COMPLEX*16 array, dimension (P)
  142: *>          If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LDU1
  146: *> \verbatim
  147: *>          LDU1 is INTEGER
  148: *>          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  149: *>          MAX(1,P).
  150: *> \endverbatim
  151: *>
  152: *> \param[out] U2
  153: *> \verbatim
  154: *>          U2 is COMPLEX*16 array, dimension (M-P)
  155: *>          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
  156: *>          matrix U2.
  157: *> \endverbatim
  158: *>
  159: *> \param[in] LDU2
  160: *> \verbatim
  161: *>          LDU2 is INTEGER
  162: *>          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  163: *>          MAX(1,M-P).
  164: *> \endverbatim
  165: *>
  166: *> \param[out] V1T
  167: *> \verbatim
  168: *>          V1T is COMPLEX*16 array, dimension (Q)
  169: *>          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
  170: *>          matrix V1**T.
  171: *> \endverbatim
  172: *>
  173: *> \param[in] LDV1T
  174: *> \verbatim
  175: *>          LDV1T is INTEGER
  176: *>          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  177: *>          MAX(1,Q).
  178: *> \endverbatim
  179: *>
  180: *> \param[out] WORK
  181: *> \verbatim
  182: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  183: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  184: *> \endverbatim
  185: *>
  186: *> \param[in] LWORK
  187: *> \verbatim
  188: *>          LWORK is INTEGER
  189: *>          The dimension of the array WORK.
  190: *>
  191: *>          If LWORK = -1, then a workspace query is assumed; the routine
  192: *>          only calculates the optimal size of the WORK and RWORK
  193: *>          arrays, returns this value as the first entry of the WORK
  194: *>          and RWORK array, respectively, and no error message related
  195: *>          to LWORK or LRWORK is issued by XERBLA.
  196: *> \endverbatim
  197: *>
  198: *> \param[out] RWORK
  199: *> \verbatim
  200: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  201: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  202: *>          If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
  203: *>          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  204: *>          define the matrix in intermediate bidiagonal-block form
  205: *>          remaining after nonconvergence. INFO specifies the number
  206: *>          of nonzero PHI's.
  207: *> \endverbatim
  208: *>
  209: *> \param[in] LRWORK
  210: *> \verbatim
  211: *>          LRWORK is INTEGER
  212: *>          The dimension of the array RWORK.
  213: *>
  214: *>          If LRWORK=-1, then a workspace query is assumed; the routine
  215: *>          only calculates the optimal size of the WORK and RWORK
  216: *>          arrays, returns this value as the first entry of the WORK
  217: *>          and RWORK array, respectively, and no error message related
  218: *>          to LWORK or LRWORK is issued by XERBLA.
  219: *> \endverbatim
  220: *
  221: *> \param[out] IWORK
  222: *> \verbatim
  223: *>          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  224: *> \endverbatim
  225: *>
  226: *> \param[out] INFO
  227: *> \verbatim
  228: *>          INFO is INTEGER
  229: *>          = 0:  successful exit.
  230: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  231: *>          > 0:  ZBBCSD did not converge. See the description of WORK
  232: *>                above for details.
  233: *> \endverbatim
  234: *
  235: *> \par References:
  236: *  ================
  237: *>
  238: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  239: *>      Algorithms, 50(1):33-65, 2009.
  240: *
  241: *  Authors:
  242: *  ========
  243: *
  244: *> \author Univ. of Tennessee
  245: *> \author Univ. of California Berkeley
  246: *> \author Univ. of Colorado Denver
  247: *> \author NAG Ltd.
  248: *
  249: *> \ingroup complex16OTHERcomputational
  250: *
  251: *  =====================================================================
  252:       SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  253:      $                       X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  254:      $                       LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  255:      $                       INFO )
  256: *
  257: *  -- LAPACK computational routine --
  258: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  259: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  260: *
  261: *     .. Scalar Arguments ..
  262:       CHARACTER          JOBU1, JOBU2, JOBV1T
  263:       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  264:      $                   M, P, Q
  265:       INTEGER            LRWORK, LRWORKMIN, LRWORKOPT
  266: *     ..
  267: *     .. Array Arguments ..
  268:       DOUBLE PRECISION   RWORK(*)
  269:       DOUBLE PRECISION   THETA(*)
  270:       COMPLEX*16         U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  271:      $                   X11(LDX11,*), X21(LDX21,*)
  272:       INTEGER            IWORK(*)
  273: *     ..
  274: *
  275: *  =====================================================================
  276: *
  277: *     .. Parameters ..
  278:       COMPLEX*16         ONE, ZERO
  279:       PARAMETER          ( ONE = (1.0D0,0.0D0), ZERO = (0.0D0,0.0D0) )
  280: *     ..
  281: *     .. Local Scalars ..
  282:       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  283:      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  284:      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  285:      $                   J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  286:      $                   LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  287:      $                   LWORKMIN, LWORKOPT, R
  288:       LOGICAL            LQUERY, WANTU1, WANTU2, WANTV1T
  289: *     ..
  290: *     .. Local Arrays ..
  291:       DOUBLE PRECISION   DUM( 1 )
  292:       COMPLEX*16         CDUM( 1, 1 )
  293: *     ..
  294: *     .. External Subroutines ..
  295:       EXTERNAL           ZBBCSD, ZCOPY, ZLACPY, ZLAPMR, ZLAPMT, ZUNBDB1,
  296:      $                   ZUNBDB2, ZUNBDB3, ZUNBDB4, ZUNGLQ, ZUNGQR,
  297:      $                   XERBLA
  298: *     ..
  299: *     .. External Functions ..
  300:       LOGICAL            LSAME
  301:       EXTERNAL           LSAME
  302: *     ..
  303: *     .. Intrinsic Function ..
  304:       INTRINSIC          INT, MAX, MIN
  305: *     ..
  306: *     .. Executable Statements ..
  307: *
  308: *     Test input arguments
  309: *
  310:       INFO = 0
  311:       WANTU1 = LSAME( JOBU1, 'Y' )
  312:       WANTU2 = LSAME( JOBU2, 'Y' )
  313:       WANTV1T = LSAME( JOBV1T, 'Y' )
  314:       LQUERY = ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 )
  315: *
  316:       IF( M .LT. 0 ) THEN
  317:          INFO = -4
  318:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  319:          INFO = -5
  320:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  321:          INFO = -6
  322:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  323:          INFO = -8
  324:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  325:          INFO = -10
  326:       ELSE IF( WANTU1 .AND. LDU1 .LT. MAX( 1, P ) ) THEN
  327:          INFO = -13
  328:       ELSE IF( WANTU2 .AND. LDU2 .LT. MAX( 1, M - P ) ) THEN
  329:          INFO = -15
  330:       ELSE IF( WANTV1T .AND. LDV1T .LT. MAX( 1, Q ) ) THEN
  331:          INFO = -17
  332:       END IF
  333: *
  334:       R = MIN( P, M-P, Q, M-Q )
  335: *
  336: *     Compute workspace
  337: *
  338: *       WORK layout:
  339: *     |-----------------------------------------|
  340: *     | LWORKOPT (1)                            |
  341: *     |-----------------------------------------|
  342: *     | TAUP1 (MAX(1,P))                        |
  343: *     | TAUP2 (MAX(1,M-P))                      |
  344: *     | TAUQ1 (MAX(1,Q))                        |
  345: *     |-----------------------------------------|
  346: *     | ZUNBDB WORK | ZUNGQR WORK | ZUNGLQ WORK |
  347: *     |             |             |             |
  348: *     |             |             |             |
  349: *     |             |             |             |
  350: *     |             |             |             |
  351: *     |-----------------------------------------|
  352: *       RWORK layout:
  353: *     |------------------|
  354: *     | LRWORKOPT (1)    |
  355: *     |------------------|
  356: *     | PHI (MAX(1,R-1)) |
  357: *     |------------------|
  358: *     | B11D (R)         |
  359: *     | B11E (R-1)       |
  360: *     | B12D (R)         |
  361: *     | B12E (R-1)       |
  362: *     | B21D (R)         |
  363: *     | B21E (R-1)       |
  364: *     | B22D (R)         |
  365: *     | B22E (R-1)       |
  366: *     | ZBBCSD RWORK     |
  367: *     |------------------|
  368: *
  369:       IF( INFO .EQ. 0 ) THEN
  370:          IPHI = 2
  371:          IB11D = IPHI + MAX( 1, R-1 )
  372:          IB11E = IB11D + MAX( 1, R )
  373:          IB12D = IB11E + MAX( 1, R - 1 )
  374:          IB12E = IB12D + MAX( 1, R )
  375:          IB21D = IB12E + MAX( 1, R - 1 )
  376:          IB21E = IB21D + MAX( 1, R )
  377:          IB22D = IB21E + MAX( 1, R - 1 )
  378:          IB22E = IB22D + MAX( 1, R )
  379:          IBBCSD = IB22E + MAX( 1, R - 1 )
  380:          ITAUP1 = 2
  381:          ITAUP2 = ITAUP1 + MAX( 1, P )
  382:          ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  383:          IORBDB = ITAUQ1 + MAX( 1, Q )
  384:          IORGQR = ITAUQ1 + MAX( 1, Q )
  385:          IORGLQ = ITAUQ1 + MAX( 1, Q )
  386:          LORGQRMIN = 1
  387:          LORGQROPT = 1
  388:          LORGLQMIN = 1
  389:          LORGLQOPT = 1
  390:          IF( R .EQ. Q ) THEN
  391:             CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  392:      $                    CDUM, CDUM, CDUM, WORK, -1, CHILDINFO )
  393:             LORBDB = INT( WORK(1) )
  394:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  395:                CALL ZUNGQR( P, P, Q, U1, LDU1, CDUM, WORK(1), -1,
  396:      $                      CHILDINFO )
  397:                LORGQRMIN = MAX( LORGQRMIN, P )
  398:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  399:             ENDIF
  400:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  401:                CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, CDUM, WORK(1), -1,
  402:      $                      CHILDINFO )
  403:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  404:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  405:             END IF
  406:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  407:                CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T, LDV1T,
  408:      $                      CDUM, WORK(1), -1, CHILDINFO )
  409:                LORGLQMIN = MAX( LORGLQMIN, Q-1 )
  410:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  411:             END IF
  412:             CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  413:      $                   DUM, U1, LDU1, U2, LDU2, V1T, LDV1T, CDUM, 1,
  414:      $                   DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  415:      $                   RWORK(1), -1, CHILDINFO )
  416:             LBBCSD = INT( RWORK(1) )
  417:          ELSE IF( R .EQ. P ) THEN
  418:             CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  419:      $                    CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO )
  420:             LORBDB = INT( WORK(1) )
  421:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  422:                CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, CDUM, WORK(1),
  423:      $                      -1, CHILDINFO )
  424:                LORGQRMIN = MAX( LORGQRMIN, P-1 )
  425:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  426:             END IF
  427:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  428:                CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, CDUM, WORK(1), -1,
  429:      $                      CHILDINFO )
  430:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  431:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  432:             END IF
  433:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  434:                CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, CDUM, WORK(1), -1,
  435:      $                      CHILDINFO )
  436:                LORGLQMIN = MAX( LORGLQMIN, Q )
  437:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  438:             END IF
  439:             CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  440:      $                   DUM, V1T, LDV1T, CDUM, 1, U1, LDU1, U2, LDU2,
  441:      $                   DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  442:      $                   RWORK(1), -1, CHILDINFO )
  443:             LBBCSD = INT( RWORK(1) )
  444:          ELSE IF( R .EQ. M-P ) THEN
  445:             CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  446:      $                    CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO )
  447:             LORBDB = INT( WORK(1) )
  448:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  449:                CALL ZUNGQR( P, P, Q, U1, LDU1, CDUM, WORK(1), -1,
  450:      $                      CHILDINFO )
  451:                LORGQRMIN = MAX( LORGQRMIN, P )
  452:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  453:             END IF
  454:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  455:                CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, CDUM,
  456:      $                      WORK(1), -1, CHILDINFO )
  457:                LORGQRMIN = MAX( LORGQRMIN, M-P-1 )
  458:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  459:             END IF
  460:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  461:                CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, CDUM, WORK(1), -1,
  462:      $                      CHILDINFO )
  463:                LORGLQMIN = MAX( LORGLQMIN, Q )
  464:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  465:             END IF
  466:             CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  467:      $                   THETA, DUM, CDUM, 1, V1T, LDV1T, U2, LDU2, U1,
  468:      $                   LDU1, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  469:      $                   RWORK(1), -1, CHILDINFO )
  470:             LBBCSD = INT( RWORK(1) )
  471:          ELSE
  472:             CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  473:      $                    CDUM, CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO
  474:      $                  )
  475:             LORBDB = M + INT( WORK(1) )
  476:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  477:                CALL ZUNGQR( P, P, M-Q, U1, LDU1, CDUM, WORK(1), -1,
  478:      $                      CHILDINFO )
  479:                LORGQRMIN = MAX( LORGQRMIN, P )
  480:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  481:             END IF
  482:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  483:                CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, CDUM, WORK(1), -1,
  484:      $                      CHILDINFO )
  485:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  486:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  487:             END IF
  488:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  489:                CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, CDUM, WORK(1), -1,
  490:      $                      CHILDINFO )
  491:                LORGLQMIN = MAX( LORGLQMIN, Q )
  492:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  493:             END IF
  494:             CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  495:      $                   THETA, DUM, U2, LDU2, U1, LDU1, CDUM, 1, V1T,
  496:      $                   LDV1T, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  497:      $                   RWORK(1), -1, CHILDINFO )
  498:             LBBCSD = INT( RWORK(1) )
  499:          END IF
  500:          LRWORKMIN = IBBCSD+LBBCSD-1
  501:          LRWORKOPT = LRWORKMIN
  502:          RWORK(1) = LRWORKOPT
  503:          LWORKMIN = MAX( IORBDB+LORBDB-1,
  504:      $                   IORGQR+LORGQRMIN-1,
  505:      $                   IORGLQ+LORGLQMIN-1 )
  506:          LWORKOPT = MAX( IORBDB+LORBDB-1,
  507:      $                   IORGQR+LORGQROPT-1,
  508:      $                   IORGLQ+LORGLQOPT-1 )
  509:          WORK(1) = LWORKOPT
  510:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  511:             INFO = -19
  512:          END IF
  513:          IF( LRWORK .LT. LRWORKMIN .AND. .NOT.LQUERY ) THEN
  514:             INFO = -21
  515:          END IF
  516:       END IF
  517:       IF( INFO .NE. 0 ) THEN
  518:          CALL XERBLA( 'ZUNCSD2BY1', -INFO )
  519:          RETURN
  520:       ELSE IF( LQUERY ) THEN
  521:          RETURN
  522:       END IF
  523:       LORGQR = LWORK-IORGQR+1
  524:       LORGLQ = LWORK-IORGLQ+1
  525: *
  526: *     Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  527: *     in which R = MIN(P,M-P,Q,M-Q)
  528: *
  529:       IF( R .EQ. Q ) THEN
  530: *
  531: *        Case 1: R = Q
  532: *
  533: *        Simultaneously bidiagonalize X11 and X21
  534: *
  535:          CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  536:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  537:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  538: *
  539: *        Accumulate Householder reflectors
  540: *
  541:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  542:             CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  543:             CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  544:      $                   LORGQR, CHILDINFO )
  545:          END IF
  546:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  547:             CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  548:             CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  549:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  550:          END IF
  551:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  552:             V1T(1,1) = ONE
  553:             DO J = 2, Q
  554:                V1T(1,J) = ZERO
  555:                V1T(J,1) = ZERO
  556:             END DO
  557:             CALL ZLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  558:      $                   LDV1T )
  559:             CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  560:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  561:          END IF
  562: *
  563: *        Simultaneously diagonalize X11 and X21.
  564: *
  565:          CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  566:      $                RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, CDUM,
  567:      $                1, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  568:      $                RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  569:      $                RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD),
  570:      $                LRWORK-IBBCSD+1, CHILDINFO )
  571: *
  572: *        Permute rows and columns to place zero submatrices in
  573: *        preferred positions
  574: *
  575:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  576:             DO I = 1, Q
  577:                IWORK(I) = M - P - Q + I
  578:             END DO
  579:             DO I = Q + 1, M - P
  580:                IWORK(I) = I - Q
  581:             END DO
  582:             CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  583:          END IF
  584:       ELSE IF( R .EQ. P ) THEN
  585: *
  586: *        Case 2: R = P
  587: *
  588: *        Simultaneously bidiagonalize X11 and X21
  589: *
  590:          CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  591:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  592:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  593: *
  594: *        Accumulate Householder reflectors
  595: *
  596:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  597:             U1(1,1) = ONE
  598:             DO J = 2, P
  599:                U1(1,J) = ZERO
  600:                U1(J,1) = ZERO
  601:             END DO
  602:             CALL ZLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  603:             CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  604:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  605:          END IF
  606:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  607:             CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  608:             CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  609:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  610:          END IF
  611:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  612:             CALL ZLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  613:             CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  614:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  615:          END IF
  616: *
  617: *        Simultaneously diagonalize X11 and X21.
  618: *
  619:          CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  620:      $                RWORK(IPHI), V1T, LDV1T, CDUM, 1, U1, LDU1, U2,
  621:      $                LDU2, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  622:      $                RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  623:      $                RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  624:      $                CHILDINFO )
  625: *
  626: *        Permute rows and columns to place identity submatrices in
  627: *        preferred positions
  628: *
  629:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  630:             DO I = 1, Q
  631:                IWORK(I) = M - P - Q + I
  632:             END DO
  633:             DO I = Q + 1, M - P
  634:                IWORK(I) = I - Q
  635:             END DO
  636:             CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  637:          END IF
  638:       ELSE IF( R .EQ. M-P ) THEN
  639: *
  640: *        Case 3: R = M-P
  641: *
  642: *        Simultaneously bidiagonalize X11 and X21
  643: *
  644:          CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  645:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  646:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  647: *
  648: *        Accumulate Householder reflectors
  649: *
  650:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  651:             CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  652:             CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  653:      $                   LORGQR, CHILDINFO )
  654:          END IF
  655:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  656:             U2(1,1) = ONE
  657:             DO J = 2, M-P
  658:                U2(1,J) = ZERO
  659:                U2(J,1) = ZERO
  660:             END DO
  661:             CALL ZLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  662:      $                   LDU2 )
  663:             CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  664:      $                   WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  665:          END IF
  666:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  667:             CALL ZLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  668:             CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  669:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  670:          END IF
  671: *
  672: *        Simultaneously diagonalize X11 and X21.
  673: *
  674:          CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  675:      $                THETA, RWORK(IPHI), CDUM, 1, V1T, LDV1T, U2, LDU2,
  676:      $                U1, LDU1, RWORK(IB11D), RWORK(IB11E),
  677:      $                RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  678:      $                RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  679:      $                RWORK(IBBCSD), LBBCSD, CHILDINFO )
  680: *
  681: *        Permute rows and columns to place identity submatrices in
  682: *        preferred positions
  683: *
  684:          IF( Q .GT. R ) THEN
  685:             DO I = 1, R
  686:                IWORK(I) = Q - R + I
  687:             END DO
  688:             DO I = R + 1, Q
  689:                IWORK(I) = I - R
  690:             END DO
  691:             IF( WANTU1 ) THEN
  692:                CALL ZLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  693:             END IF
  694:             IF( WANTV1T ) THEN
  695:                CALL ZLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  696:             END IF
  697:          END IF
  698:       ELSE
  699: *
  700: *        Case 4: R = M-Q
  701: *
  702: *        Simultaneously bidiagonalize X11 and X21
  703: *
  704:          CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  705:      $                 RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  706:      $                 WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  707:      $                 LORBDB-M, CHILDINFO )
  708: *
  709: *        Accumulate Householder reflectors
  710: *
  711:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  712:             CALL ZCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  713:          END IF
  714:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  715:             CALL ZCOPY( P, WORK(IORBDB), 1, U1, 1 )
  716:             DO J = 2, P
  717:                U1(1,J) = ZERO
  718:             END DO
  719:             CALL ZLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  720:      $                   LDU1 )
  721:             CALL ZUNGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  722:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  723:          END IF
  724:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  725:             DO J = 2, M-P
  726:                U2(1,J) = ZERO
  727:             END DO
  728:             CALL ZLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  729:      $                   LDU2 )
  730:             CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  731:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  732:          END IF
  733:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  734:             CALL ZLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  735:             CALL ZLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  736:      $                   V1T(M-Q+1,M-Q+1), LDV1T )
  737:             CALL ZLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  738:      $                   V1T(P+1,P+1), LDV1T )
  739:             CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  740:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  741:          END IF
  742: *
  743: *        Simultaneously diagonalize X11 and X21.
  744: *
  745:          CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  746:      $                THETA, RWORK(IPHI), U2, LDU2, U1, LDU1, CDUM, 1,
  747:      $                V1T, LDV1T, RWORK(IB11D), RWORK(IB11E),
  748:      $                RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  749:      $                RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  750:      $                RWORK(IBBCSD), LBBCSD, CHILDINFO )
  751: *
  752: *        Permute rows and columns to place identity submatrices in
  753: *        preferred positions
  754: *
  755:          IF( P .GT. R ) THEN
  756:             DO I = 1, R
  757:                IWORK(I) = P - R + I
  758:             END DO
  759:             DO I = R + 1, P
  760:                IWORK(I) = I - R
  761:             END DO
  762:             IF( WANTU1 ) THEN
  763:                CALL ZLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  764:             END IF
  765:             IF( WANTV1T ) THEN
  766:                CALL ZLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  767:             END IF
  768:          END IF
  769:       END IF
  770: *
  771:       RETURN
  772: *
  773: *     End of ZUNCSD2BY1
  774: *
  775:       END
  776: 

CVSweb interface <joel.bertrand@systella.fr>