File:  [local] / rpl / lapack / lapack / zuncsd.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:50:38 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.3.0.

    1:       RECURSIVE SUBROUTINE ZUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
    2:      $                             SIGNS, M, P, Q, X11, LDX11, X12,
    3:      $                             LDX12, X21, LDX21, X22, LDX22, THETA,
    4:      $                             U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
    5:      $                             LDV2T, WORK, LWORK, RWORK, LRWORK,
    6:      $                             IWORK, INFO )
    7:       IMPLICIT NONE
    8: *
    9: *  -- LAPACK routine (version 3.3.0) --
   10: *
   11: *  -- Contributed by Brian Sutton of the Randolph-Macon College --
   12: *  -- November 2010
   13: *
   14: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
   15: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--     
   16: *
   17: *     .. Scalar Arguments ..
   18:       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
   19:       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
   20:      $                   LDX21, LDX22, LRWORK, LWORK, M, P, Q
   21: *     ..
   22: *     .. Array Arguments ..
   23:       INTEGER            IWORK( * )
   24:       DOUBLE PRECISION   THETA( * )
   25:       DOUBLE PRECISION   RWORK( * )
   26:       COMPLEX*16         U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
   27:      $                   V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
   28:      $                   X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
   29:      $                   * )
   30: *     ..
   31: *
   32: *  Purpose
   33: *  =======
   34: *
   35: *  ZUNCSD computes the CS decomposition of an M-by-M partitioned
   36: *  unitary matrix X:
   37: *
   38: *                                  [  I  0  0 |  0  0  0 ]
   39: *                                  [  0  C  0 |  0 -S  0 ]
   40: *      [ X11 | X12 ]   [ U1 |    ] [  0  0  0 |  0  0 -I ] [ V1 |    ]**H
   41: *  X = [-----------] = [---------] [---------------------] [---------]   .
   42: *      [ X21 | X22 ]   [    | U2 ] [  0  0  0 |  I  0  0 ] [    | V2 ]
   43: *                                  [  0  S  0 |  0  C  0 ]
   44: *                                  [  0  0  I |  0  0  0 ]
   45: *
   46: *  X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P,
   47: *  (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
   48: *  R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
   49: *  which R = MIN(P,M-P,Q,M-Q).
   50: *
   51: *  Arguments
   52: *  =========
   53: *
   54: *  JOBU1   (input) CHARACTER
   55: *          = 'Y':      U1 is computed;
   56: *          otherwise:  U1 is not computed.
   57: *
   58: *  JOBU2   (input) CHARACTER
   59: *          = 'Y':      U2 is computed;
   60: *          otherwise:  U2 is not computed.
   61: *
   62: *  JOBV1T  (input) CHARACTER
   63: *          = 'Y':      V1T is computed;
   64: *          otherwise:  V1T is not computed.
   65: *
   66: *  JOBV2T  (input) CHARACTER
   67: *          = 'Y':      V2T is computed;
   68: *          otherwise:  V2T is not computed.
   69: *
   70: *  TRANS   (input) CHARACTER
   71: *          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
   72: *                      order;
   73: *          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
   74: *                      major order.
   75: *
   76: *  SIGNS   (input) CHARACTER
   77: *          = 'O':      The lower-left block is made nonpositive (the
   78: *                      "other" convention);
   79: *          otherwise:  The upper-right block is made nonpositive (the
   80: *                      "default" convention).
   81: *
   82: *  M       (input) INTEGER
   83: *          The number of rows and columns in X.
   84: *
   85: *  P       (input) INTEGER
   86: *          The number of rows in X11 and X12. 0 <= P <= M.
   87: *
   88: *  Q       (input) INTEGER
   89: *          The number of columns in X11 and X21. 0 <= Q <= M.
   90: *
   91: *  X       (input/workspace) COMPLEX*16 array, dimension (LDX,M)
   92: *          On entry, the unitary matrix whose CSD is desired.
   93: *
   94: *  LDX     (input) INTEGER
   95: *          The leading dimension of X. LDX >= MAX(1,M).
   96: *
   97: *  THETA   (output) DOUBLE PRECISION array, dimension (R), in which R =
   98: *          MIN(P,M-P,Q,M-Q).
   99: *          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  100: *          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  101: *
  102: *  U1      (output) COMPLEX*16 array, dimension (P)
  103: *          If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
  104: *
  105: *  LDU1    (input) INTEGER
  106: *          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  107: *          MAX(1,P).
  108: *
  109: *  U2      (output) COMPLEX*16 array, dimension (M-P)
  110: *          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
  111: *          matrix U2.
  112: *
  113: *  LDU2    (input) INTEGER
  114: *          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  115: *          MAX(1,M-P).
  116: *
  117: *  V1T     (output) COMPLEX*16 array, dimension (Q)
  118: *          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
  119: *          matrix V1**H.
  120: *
  121: *  LDV1T   (input) INTEGER
  122: *          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  123: *          MAX(1,Q).
  124: *
  125: *  V2T     (output) COMPLEX*16 array, dimension (M-Q)
  126: *          If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary
  127: *          matrix V2**H.
  128: *
  129: *  LDV2T   (input) INTEGER
  130: *          The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
  131: *          MAX(1,M-Q).
  132: *
  133: *  WORK    (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
  134: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  135: *
  136: *  LWORK   (input) INTEGER
  137: *          The dimension of the array WORK.
  138: *
  139: *          If LWORK = -1, then a workspace query is assumed; the routine
  140: *          only calculates the optimal size of the WORK array, returns
  141: *          this value as the first entry of the work array, and no error
  142: *          message related to LWORK is issued by XERBLA.
  143: *
  144: *  RWORK   (workspace) DOUBLE PRECISION array, dimension MAX(1,LRWORK)
  145: *          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  146: *          If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
  147: *          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  148: *          define the matrix in intermediate bidiagonal-block form
  149: *          remaining after nonconvergence. INFO specifies the number
  150: *          of nonzero PHI's.
  151: *
  152: *  LRWORK  (input) INTEGER
  153: *          The dimension of the array RWORK.
  154: *
  155: *          If LRWORK = -1, then a workspace query is assumed; the routine
  156: *          only calculates the optimal size of the RWORK array, returns
  157: *          this value as the first entry of the work array, and no error
  158: *          message related to LRWORK is issued by XERBLA.
  159: *
  160: *  IWORK   (workspace) INTEGER array, dimension (M-Q)
  161: *
  162: *  INFO    (output) INTEGER
  163: *          = 0:  successful exit.
  164: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  165: *          > 0:  ZBBCSD did not converge. See the description of RWORK
  166: *                above for details.
  167: *
  168: *  Reference
  169: *  =========
  170: *
  171: *  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  172: *      Algorithms, 50(1):33-65, 2009.
  173: *
  174: *  ===================================================================
  175: *
  176: *     .. Parameters ..
  177:       DOUBLE PRECISION   REALONE
  178:       PARAMETER          ( REALONE = 1.0D0 )
  179:       COMPLEX*16         NEGONE, ONE, PIOVER2, ZERO
  180:       PARAMETER          ( NEGONE = (-1.0D0,0.0D0), ONE = (1.0D0,0.0D0),
  181:      $                     PIOVER2 = 1.57079632679489662D0,
  182:      $                     ZERO = (0.0D0,0.0D0) )
  183: *     ..
  184: *     .. Local Scalars ..
  185:       CHARACTER          TRANST, SIGNST
  186:       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  187:      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  188:      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  189:      $                   ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN,
  190:      $                   LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN,
  191:      $                   LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN,
  192:      $                   LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN,
  193:      $                   LORGQRWORKOPT, LWORKMIN, LWORKOPT
  194:       LOGICAL            COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2,
  195:      $                   WANTV1T, WANTV2T
  196:       INTEGER            LRWORKMIN, LRWORKOPT
  197:       LOGICAL            LRQUERY
  198: *     ..
  199: *     .. External Subroutines ..
  200:       EXTERNAL           XERBLA, ZBBCSD, ZLACPY, ZLAPMR, ZLAPMT, ZLASCL,
  201:      $                   ZLASET, ZUNBDB, ZUNGLQ, ZUNGQR
  202: *     ..
  203: *     .. External Functions ..
  204:       LOGICAL            LSAME
  205:       EXTERNAL           LSAME
  206: *     ..
  207: *     .. Intrinsic Functions
  208:       INTRINSIC          COS, INT, MAX, MIN, SIN
  209: *     ..
  210: *     .. Executable Statements ..
  211: *
  212: *     Test input arguments
  213: *
  214:       INFO = 0
  215:       WANTU1 = LSAME( JOBU1, 'Y' )
  216:       WANTU2 = LSAME( JOBU2, 'Y' )
  217:       WANTV1T = LSAME( JOBV1T, 'Y' )
  218:       WANTV2T = LSAME( JOBV2T, 'Y' )
  219:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  220:       DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' )
  221:       LQUERY = LWORK .EQ. -1
  222:       LRQUERY = LRWORK .EQ. -1
  223:       IF( M .LT. 0 ) THEN
  224:          INFO = -7
  225:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  226:          INFO = -8
  227:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  228:          INFO = -9
  229:       ELSE IF( ( COLMAJOR .AND. LDX11 .LT. MAX(1,P) ) .OR.
  230:      $         ( .NOT.COLMAJOR .AND. LDX11 .LT. MAX(1,Q) ) ) THEN
  231:          INFO = -11
  232:       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  233:          INFO = -14
  234:       ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
  235:          INFO = -16
  236:       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  237:          INFO = -18
  238:       ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
  239:          INFO = -20
  240:       END IF
  241: *
  242: *     Work with transpose if convenient
  243: *
  244:       IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN
  245:          IF( COLMAJOR ) THEN
  246:             TRANST = 'T'
  247:          ELSE
  248:             TRANST = 'N'
  249:          END IF
  250:          IF( DEFAULTSIGNS ) THEN
  251:             SIGNST = 'O'
  252:          ELSE
  253:             SIGNST = 'D'
  254:          END IF
  255:          CALL ZUNCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, M,
  256:      $                Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22,
  257:      $                LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1,
  258:      $                U2, LDU2, WORK, LWORK, RWORK, LRWORK, IWORK,
  259:      $                INFO )
  260:          RETURN
  261:       END IF
  262: *
  263: *     Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if
  264: *     convenient
  265: *
  266:       IF( INFO .EQ. 0 .AND. M-Q .LT. Q ) THEN
  267:          IF( DEFAULTSIGNS ) THEN
  268:             SIGNST = 'O'
  269:          ELSE
  270:             SIGNST = 'D'
  271:          END IF
  272:          CALL ZUNCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M,
  273:      $                M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11,
  274:      $                LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T,
  275:      $                LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK, INFO )
  276:          RETURN
  277:       END IF
  278: *
  279: *     Compute workspace
  280: *
  281:       IF( INFO .EQ. 0 ) THEN
  282: *
  283: *        Real workspace
  284: *
  285:          IPHI = 2
  286:          IB11D = IPHI + MAX( 1, Q - 1 )
  287:          IB11E = IB11D + MAX( 1, Q )
  288:          IB12D = IB11E + MAX( 1, Q - 1 )
  289:          IB12E = IB12D + MAX( 1, Q )
  290:          IB21D = IB12E + MAX( 1, Q - 1 )
  291:          IB21E = IB21D + MAX( 1, Q )
  292:          IB22D = IB21E + MAX( 1, Q - 1 )
  293:          IB22E = IB22D + MAX( 1, Q )
  294:          IBBCSD = IB22E + MAX( 1, Q - 1 )
  295:          CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, 0,
  296:      $                0, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, 0,
  297:      $                0, 0, 0, 0, 0, 0, 0, RWORK, -1, CHILDINFO )
  298:          LBBCSDWORKOPT = INT( RWORK(1) )
  299:          LBBCSDWORKMIN = LBBCSDWORKOPT
  300:          LRWORKOPT = IBBCSD + LBBCSDWORKOPT - 1
  301:          LRWORKMIN = IBBCSD + LBBCSDWORKMIN - 1
  302:          RWORK(1) = LRWORKOPT
  303: *
  304: *        Complex workspace
  305: *
  306:          ITAUP1 = 2
  307:          ITAUP2 = ITAUP1 + MAX( 1, P )
  308:          ITAUQ1 = ITAUP2 + MAX( 1, M - P )
  309:          ITAUQ2 = ITAUQ1 + MAX( 1, Q )
  310:          IORGQR = ITAUQ2 + MAX( 1, M - Q )
  311:          CALL ZUNGQR( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), 0, WORK, -1,
  312:      $                CHILDINFO )
  313:          LORGQRWORKOPT = INT( WORK(1) )
  314:          LORGQRWORKMIN = MAX( 1, M - Q )
  315:          IORGLQ = ITAUQ2 + MAX( 1, M - Q )
  316:          CALL ZUNGLQ( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), 0, WORK, -1,
  317:      $                CHILDINFO )
  318:          LORGLQWORKOPT = INT( WORK(1) )
  319:          LORGLQWORKMIN = MAX( 1, M - Q )
  320:          IORBDB = ITAUQ2 + MAX( 1, M - Q )
  321:          CALL ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
  322:      $                X21, LDX21, X22, LDX22, 0, 0, 0, 0, 0, 0, WORK,
  323:      $                -1, CHILDINFO )
  324:          LORBDBWORKOPT = INT( WORK(1) )
  325:          LORBDBWORKMIN = LORBDBWORKOPT
  326:          LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT,
  327:      $              IORBDB + LORBDBWORKOPT ) - 1
  328:          LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN,
  329:      $              IORBDB + LORBDBWORKMIN ) - 1
  330:          WORK(1) = LWORKOPT
  331: *
  332:          IF( LWORK .LT. LWORKMIN
  333:      $       .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
  334:             INFO = -22
  335:          ELSE IF( LRWORK .LT. LRWORKMIN
  336:      $            .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
  337:             INFO = -24
  338:          ELSE
  339:             LORGQRWORK = LWORK - IORGQR + 1
  340:             LORGLQWORK = LWORK - IORGLQ + 1
  341:             LORBDBWORK = LWORK - IORBDB + 1
  342:             LBBCSDWORK = LRWORK - IBBCSD + 1
  343:          END IF
  344:       END IF
  345: *
  346: *     Abort if any illegal arguments
  347: *
  348:       IF( INFO .NE. 0 ) THEN
  349:          CALL XERBLA( 'ZUNCSD', -INFO )
  350:          RETURN
  351:       ELSE IF( LQUERY .OR. LRQUERY ) THEN
  352:          RETURN
  353:       END IF
  354: *
  355: *     Transform to bidiagonal block form
  356: *
  357:       CALL ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21,
  358:      $             LDX21, X22, LDX22, THETA, RWORK(IPHI), WORK(ITAUP1),
  359:      $             WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2),
  360:      $             WORK(IORBDB), LORBDBWORK, CHILDINFO )
  361: *
  362: *     Accumulate Householder reflectors
  363: *
  364:       IF( COLMAJOR ) THEN
  365:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  366:             CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  367:             CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  368:      $                   LORGQRWORK, INFO)
  369:          END IF
  370:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  371:             CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  372:             CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  373:      $                   WORK(IORGQR), LORGQRWORK, INFO )
  374:          END IF
  375:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  376:             CALL ZLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2),
  377:      $                   LDV1T )
  378:             V1T(1, 1) = ONE
  379:             DO J = 2, Q
  380:                V1T(1,J) = ZERO
  381:                V1T(J,1) = ZERO
  382:             END DO
  383:             CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  384:      $                   WORK(IORGLQ), LORGLQWORK, INFO )
  385:          END IF
  386:          IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
  387:             CALL ZLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T )
  388:             CALL ZLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22,
  389:      $                   V2T(P+1,P+1), LDV2T )
  390:             CALL ZUNGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
  391:      $                   WORK(IORGLQ), LORGLQWORK, INFO )
  392:          END IF
  393:       ELSE
  394:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  395:             CALL ZLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 )
  396:             CALL ZUNGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGLQ),
  397:      $                   LORGLQWORK, INFO)
  398:          END IF
  399:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  400:             CALL ZLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 )
  401:             CALL ZUNGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  402:      $                   WORK(IORGLQ), LORGLQWORK, INFO )
  403:          END IF
  404:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  405:             CALL ZLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2),
  406:      $                   LDV1T )
  407:             V1T(1, 1) = ONE
  408:             DO J = 2, Q
  409:                V1T(1,J) = ZERO
  410:                V1T(J,1) = ZERO
  411:             END DO
  412:             CALL ZUNGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  413:      $                   WORK(IORGQR), LORGQRWORK, INFO )
  414:          END IF
  415:          IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
  416:             CALL ZLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T )
  417:             CALL ZLACPY( 'L', M-P-Q, M-P-Q, X22(P+1,Q+1), LDX22,
  418:      $                   V2T(P+1,P+1), LDV2T )
  419:             CALL ZUNGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
  420:      $                   WORK(IORGQR), LORGQRWORK, INFO )
  421:          END IF
  422:       END IF
  423: *
  424: *     Compute the CSD of the matrix in bidiagonal-block form
  425: *
  426:       CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
  427:      $             RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
  428:      $             LDV2T, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  429:      $             RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  430:      $             RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD),
  431:      $             LBBCSDWORK, INFO )
  432: *
  433: *     Permute rows and columns to place identity submatrices in top-
  434: *     left corner of (1,1)-block and/or bottom-right corner of (1,2)-
  435: *     block and/or bottom-right corner of (2,1)-block and/or top-left
  436: *     corner of (2,2)-block 
  437: *
  438:       IF( Q .GT. 0 .AND. WANTU2 ) THEN
  439:          DO I = 1, Q
  440:             IWORK(I) = M - P - Q + I
  441:          END DO
  442:          DO I = Q + 1, M - P
  443:             IWORK(I) = I - Q
  444:          END DO
  445:          IF( COLMAJOR ) THEN
  446:             CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  447:          ELSE
  448:             CALL ZLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  449:          END IF
  450:       END IF
  451:       IF( M .GT. 0 .AND. WANTV2T ) THEN
  452:          DO I = 1, P
  453:             IWORK(I) = M - P - Q + I
  454:          END DO
  455:          DO I = P + 1, M - Q
  456:             IWORK(I) = I - P
  457:          END DO
  458:          IF( .NOT. COLMAJOR ) THEN
  459:             CALL ZLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
  460:          ELSE
  461:             CALL ZLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
  462:          END IF
  463:       END IF
  464: *
  465:       RETURN
  466: *
  467: *     End ZUNCSD
  468: *
  469:       END
  470: 

CVSweb interface <joel.bertrand@systella.fr>