Annotation of rpl/lapack/lapack/zuncsd.f, revision 1.4

1.4     ! bertrand    1: *> \brief \b ZUNCSD
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZUNCSD + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuncsd.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zuncsd.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zuncsd.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       RECURSIVE SUBROUTINE ZUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
        !            22: *                                    SIGNS, M, P, Q, X11, LDX11, X12,
        !            23: *                                    LDX12, X21, LDX21, X22, LDX22, THETA,
        !            24: *                                    U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
        !            25: *                                    LDV2T, WORK, LWORK, RWORK, LRWORK,
        !            26: *                                    IWORK, INFO )
        !            27: * 
        !            28: *       .. Scalar Arguments ..
        !            29: *       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
        !            30: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
        !            31: *      $                   LDX21, LDX22, LRWORK, LWORK, M, P, Q
        !            32: *       ..
        !            33: *       .. Array Arguments ..
        !            34: *       INTEGER            IWORK( * )
        !            35: *       DOUBLE PRECISION   THETA( * )
        !            36: *       DOUBLE PRECISION   RWORK( * )
        !            37: *       COMPLEX*16         U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
        !            38: *      $                   V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
        !            39: *      $                   X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
        !            40: *      $                   * )
        !            41: *       ..
        !            42: *  
        !            43: *
        !            44: *> \par Purpose:
        !            45: *  =============
        !            46: *>
        !            47: *> \verbatim
        !            48: *>
        !            49: *> ZUNCSD computes the CS decomposition of an M-by-M partitioned
        !            50: *> unitary matrix X:
        !            51: *>
        !            52: *>                                 [  I  0  0 |  0  0  0 ]
        !            53: *>                                 [  0  C  0 |  0 -S  0 ]
        !            54: *>     [ X11 | X12 ]   [ U1 |    ] [  0  0  0 |  0  0 -I ] [ V1 |    ]**H
        !            55: *> X = [-----------] = [---------] [---------------------] [---------]   .
        !            56: *>     [ X21 | X22 ]   [    | U2 ] [  0  0  0 |  I  0  0 ] [    | V2 ]
        !            57: *>                                 [  0  S  0 |  0  C  0 ]
        !            58: *>                                 [  0  0  I |  0  0  0 ]
        !            59: *>
        !            60: *> X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P,
        !            61: *> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
        !            62: *> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
        !            63: *> which R = MIN(P,M-P,Q,M-Q).
        !            64: *> \endverbatim
        !            65: *
        !            66: *  Arguments:
        !            67: *  ==========
        !            68: *
        !            69: *> \param[in] JOBU1
        !            70: *> \verbatim
        !            71: *>          JOBU1 is CHARACTER
        !            72: *>          = 'Y':      U1 is computed;
        !            73: *>          otherwise:  U1 is not computed.
        !            74: *> \endverbatim
        !            75: *>
        !            76: *> \param[in] JOBU2
        !            77: *> \verbatim
        !            78: *>          JOBU2 is CHARACTER
        !            79: *>          = 'Y':      U2 is computed;
        !            80: *>          otherwise:  U2 is not computed.
        !            81: *> \endverbatim
        !            82: *>
        !            83: *> \param[in] JOBV1T
        !            84: *> \verbatim
        !            85: *>          JOBV1T is CHARACTER
        !            86: *>          = 'Y':      V1T is computed;
        !            87: *>          otherwise:  V1T is not computed.
        !            88: *> \endverbatim
        !            89: *>
        !            90: *> \param[in] JOBV2T
        !            91: *> \verbatim
        !            92: *>          JOBV2T is CHARACTER
        !            93: *>          = 'Y':      V2T is computed;
        !            94: *>          otherwise:  V2T is not computed.
        !            95: *> \endverbatim
        !            96: *>
        !            97: *> \param[in] TRANS
        !            98: *> \verbatim
        !            99: *>          TRANS is CHARACTER
        !           100: *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
        !           101: *>                      order;
        !           102: *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
        !           103: *>                      major order.
        !           104: *> \endverbatim
        !           105: *>
        !           106: *> \param[in] SIGNS
        !           107: *> \verbatim
        !           108: *>          SIGNS is CHARACTER
        !           109: *>          = 'O':      The lower-left block is made nonpositive (the
        !           110: *>                      "other" convention);
        !           111: *>          otherwise:  The upper-right block is made nonpositive (the
        !           112: *>                      "default" convention).
        !           113: *> \endverbatim
        !           114: *>
        !           115: *> \param[in] M
        !           116: *> \verbatim
        !           117: *>          M is INTEGER
        !           118: *>          The number of rows and columns in X.
        !           119: *> \endverbatim
        !           120: *>
        !           121: *> \param[in] P
        !           122: *> \verbatim
        !           123: *>          P is INTEGER
        !           124: *>          The number of rows in X11 and X12. 0 <= P <= M.
        !           125: *> \endverbatim
        !           126: *>
        !           127: *> \param[in] Q
        !           128: *> \verbatim
        !           129: *>          Q is INTEGER
        !           130: *>          The number of columns in X11 and X21. 0 <= Q <= M.
        !           131: *> \endverbatim
        !           132: *>
        !           133: *> \param[in,out] X11
        !           134: *> \verbatim
        !           135: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
        !           136: *>          On entry, part of the unitary matrix whose CSD is desired.
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[in] LDX11
        !           140: *> \verbatim
        !           141: *>          LDX11 is INTEGER
        !           142: *>          The leading dimension of X11. LDX11 >= MAX(1,P).
        !           143: *> \endverbatim
        !           144: *>
        !           145: *> \param[in,out] X12
        !           146: *> \verbatim
        !           147: *>          X12 is COMPLEX*16 array, dimension (LDX12,M-Q)
        !           148: *>          On entry, part of the unitary matrix whose CSD is desired.
        !           149: *> \endverbatim
        !           150: *>
        !           151: *> \param[in] LDX12
        !           152: *> \verbatim
        !           153: *>          LDX12 is INTEGER
        !           154: *>          The leading dimension of X12. LDX12 >= MAX(1,P).
        !           155: *> \endverbatim
        !           156: *>
        !           157: *> \param[in,out] X21
        !           158: *> \verbatim
        !           159: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
        !           160: *>          On entry, part of the unitary matrix whose CSD is desired.
        !           161: *> \endverbatim
        !           162: *>
        !           163: *> \param[in] LDX21
        !           164: *> \verbatim
        !           165: *>          LDX21 is INTEGER
        !           166: *>          The leading dimension of X11. LDX21 >= MAX(1,M-P).
        !           167: *> \endverbatim
        !           168: *>
        !           169: *> \param[in,out] X22
        !           170: *> \verbatim
        !           171: *>          X22 is COMPLEX*16 array, dimension (LDX22,M-Q)
        !           172: *>          On entry, part of the unitary matrix whose CSD is desired.
        !           173: *> \endverbatim
        !           174: *>
        !           175: *> \param[in] LDX22
        !           176: *> \verbatim
        !           177: *>          LDX22 is INTEGER
        !           178: *>          The leading dimension of X11. LDX22 >= MAX(1,M-P).
        !           179: *> \endverbatim
        !           180: *>
        !           181: *> \param[out] THETA
        !           182: *> \verbatim
        !           183: *>          THETA is DOUBLE PRECISION array, dimension (R), in which R =
        !           184: *>          MIN(P,M-P,Q,M-Q).
        !           185: *>          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
        !           186: *>          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
        !           187: *> \endverbatim
        !           188: *>
        !           189: *> \param[out] U1
        !           190: *> \verbatim
        !           191: *>          U1 is COMPLEX*16 array, dimension (P)
        !           192: *>          If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
        !           193: *> \endverbatim
        !           194: *>
        !           195: *> \param[in] LDU1
        !           196: *> \verbatim
        !           197: *>          LDU1 is INTEGER
        !           198: *>          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
        !           199: *>          MAX(1,P).
        !           200: *> \endverbatim
        !           201: *>
        !           202: *> \param[out] U2
        !           203: *> \verbatim
        !           204: *>          U2 is COMPLEX*16 array, dimension (M-P)
        !           205: *>          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
        !           206: *>          matrix U2.
        !           207: *> \endverbatim
        !           208: *>
        !           209: *> \param[in] LDU2
        !           210: *> \verbatim
        !           211: *>          LDU2 is INTEGER
        !           212: *>          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
        !           213: *>          MAX(1,M-P).
        !           214: *> \endverbatim
        !           215: *>
        !           216: *> \param[out] V1T
        !           217: *> \verbatim
        !           218: *>          V1T is COMPLEX*16 array, dimension (Q)
        !           219: *>          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
        !           220: *>          matrix V1**H.
        !           221: *> \endverbatim
        !           222: *>
        !           223: *> \param[in] LDV1T
        !           224: *> \verbatim
        !           225: *>          LDV1T is INTEGER
        !           226: *>          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
        !           227: *>          MAX(1,Q).
        !           228: *> \endverbatim
        !           229: *>
        !           230: *> \param[out] V2T
        !           231: *> \verbatim
        !           232: *>          V2T is COMPLEX*16 array, dimension (M-Q)
        !           233: *>          If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary
        !           234: *>          matrix V2**H.
        !           235: *> \endverbatim
        !           236: *>
        !           237: *> \param[in] LDV2T
        !           238: *> \verbatim
        !           239: *>          LDV2T is INTEGER
        !           240: *>          The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
        !           241: *>          MAX(1,M-Q).
        !           242: *> \endverbatim
        !           243: *>
        !           244: *> \param[out] WORK
        !           245: *> \verbatim
        !           246: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           247: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           248: *> \endverbatim
        !           249: *>
        !           250: *> \param[in] LWORK
        !           251: *> \verbatim
        !           252: *>          LWORK is INTEGER
        !           253: *>          The dimension of the array WORK.
        !           254: *>
        !           255: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           256: *>          only calculates the optimal size of the WORK array, returns
        !           257: *>          this value as the first entry of the work array, and no error
        !           258: *>          message related to LWORK is issued by XERBLA.
        !           259: *> \endverbatim
        !           260: *>
        !           261: *> \param[out] RWORK
        !           262: *> \verbatim
        !           263: *>          RWORK is DOUBLE PRECISION array, dimension MAX(1,LRWORK)
        !           264: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
        !           265: *>          If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
        !           266: *>          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
        !           267: *>          define the matrix in intermediate bidiagonal-block form
        !           268: *>          remaining after nonconvergence. INFO specifies the number
        !           269: *>          of nonzero PHI's.
        !           270: *> \endverbatim
        !           271: *>
        !           272: *> \param[in] LRWORK
        !           273: *> \verbatim
        !           274: *>          LRWORK is INTEGER
        !           275: *>          The dimension of the array RWORK.
        !           276: *>
        !           277: *>          If LRWORK = -1, then a workspace query is assumed; the routine
        !           278: *>          only calculates the optimal size of the RWORK array, returns
        !           279: *>          this value as the first entry of the work array, and no error
        !           280: *>          message related to LRWORK is issued by XERBLA.
        !           281: *> \endverbatim
        !           282: *>
        !           283: *> \param[out] IWORK
        !           284: *> \verbatim
        !           285: *>          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
        !           286: *> \endverbatim
        !           287: *>
        !           288: *> \param[out] INFO
        !           289: *> \verbatim
        !           290: *>          INFO is INTEGER
        !           291: *>          = 0:  successful exit.
        !           292: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           293: *>          > 0:  ZBBCSD did not converge. See the description of RWORK
        !           294: *>                above for details.
        !           295: *> \endverbatim
        !           296: *
        !           297: *> \par References:
        !           298: *  ================
        !           299: *>
        !           300: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
        !           301: *>      Algorithms, 50(1):33-65, 2009.
        !           302: *
        !           303: *  Authors:
        !           304: *  ========
        !           305: *
        !           306: *> \author Univ. of Tennessee 
        !           307: *> \author Univ. of California Berkeley 
        !           308: *> \author Univ. of Colorado Denver 
        !           309: *> \author NAG Ltd. 
        !           310: *
        !           311: *> \date November 2011
        !           312: *
        !           313: *> \ingroup complex16OTHERcomputational
        !           314: *
        !           315: *  =====================================================================
1.1       bertrand  316:       RECURSIVE SUBROUTINE ZUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
                    317:      $                             SIGNS, M, P, Q, X11, LDX11, X12,
                    318:      $                             LDX12, X21, LDX21, X22, LDX22, THETA,
                    319:      $                             U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
                    320:      $                             LDV2T, WORK, LWORK, RWORK, LRWORK,
                    321:      $                             IWORK, INFO )
                    322: *
1.4     ! bertrand  323: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  324: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
1.4     ! bertrand  325: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           326: *     November 2011
1.3       bertrand  327: *
1.1       bertrand  328: *     .. Scalar Arguments ..
                    329:       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
                    330:       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
                    331:      $                   LDX21, LDX22, LRWORK, LWORK, M, P, Q
                    332: *     ..
                    333: *     .. Array Arguments ..
                    334:       INTEGER            IWORK( * )
                    335:       DOUBLE PRECISION   THETA( * )
                    336:       DOUBLE PRECISION   RWORK( * )
                    337:       COMPLEX*16         U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
                    338:      $                   V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
                    339:      $                   X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
                    340:      $                   * )
                    341: *     ..
                    342: *
                    343: *  ===================================================================
                    344: *
                    345: *     .. Parameters ..
                    346:       DOUBLE PRECISION   REALONE
                    347:       PARAMETER          ( REALONE = 1.0D0 )
                    348:       COMPLEX*16         NEGONE, ONE, PIOVER2, ZERO
                    349:       PARAMETER          ( NEGONE = (-1.0D0,0.0D0), ONE = (1.0D0,0.0D0),
                    350:      $                     PIOVER2 = 1.57079632679489662D0,
                    351:      $                     ZERO = (0.0D0,0.0D0) )
                    352: *     ..
                    353: *     .. Local Scalars ..
                    354:       CHARACTER          TRANST, SIGNST
                    355:       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
                    356:      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
                    357:      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
                    358:      $                   ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN,
                    359:      $                   LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN,
                    360:      $                   LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN,
                    361:      $                   LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN,
                    362:      $                   LORGQRWORKOPT, LWORKMIN, LWORKOPT
                    363:       LOGICAL            COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2,
                    364:      $                   WANTV1T, WANTV2T
                    365:       INTEGER            LRWORKMIN, LRWORKOPT
                    366:       LOGICAL            LRQUERY
                    367: *     ..
                    368: *     .. External Subroutines ..
                    369:       EXTERNAL           XERBLA, ZBBCSD, ZLACPY, ZLAPMR, ZLAPMT, ZLASCL,
                    370:      $                   ZLASET, ZUNBDB, ZUNGLQ, ZUNGQR
                    371: *     ..
                    372: *     .. External Functions ..
                    373:       LOGICAL            LSAME
                    374:       EXTERNAL           LSAME
                    375: *     ..
                    376: *     .. Intrinsic Functions
                    377:       INTRINSIC          COS, INT, MAX, MIN, SIN
                    378: *     ..
                    379: *     .. Executable Statements ..
                    380: *
                    381: *     Test input arguments
                    382: *
                    383:       INFO = 0
                    384:       WANTU1 = LSAME( JOBU1, 'Y' )
                    385:       WANTU2 = LSAME( JOBU2, 'Y' )
                    386:       WANTV1T = LSAME( JOBV1T, 'Y' )
                    387:       WANTV2T = LSAME( JOBV2T, 'Y' )
                    388:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
                    389:       DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' )
                    390:       LQUERY = LWORK .EQ. -1
                    391:       LRQUERY = LRWORK .EQ. -1
                    392:       IF( M .LT. 0 ) THEN
                    393:          INFO = -7
                    394:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
                    395:          INFO = -8
                    396:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
                    397:          INFO = -9
                    398:       ELSE IF( ( COLMAJOR .AND. LDX11 .LT. MAX(1,P) ) .OR.
                    399:      $         ( .NOT.COLMAJOR .AND. LDX11 .LT. MAX(1,Q) ) ) THEN
                    400:          INFO = -11
                    401:       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
1.4     ! bertrand  402:          INFO = -20
1.1       bertrand  403:       ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
1.4     ! bertrand  404:          INFO = -22
1.1       bertrand  405:       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
1.4     ! bertrand  406:          INFO = -24
1.1       bertrand  407:       ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
1.4     ! bertrand  408:          INFO = -26
1.1       bertrand  409:       END IF
                    410: *
                    411: *     Work with transpose if convenient
                    412: *
                    413:       IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN
                    414:          IF( COLMAJOR ) THEN
                    415:             TRANST = 'T'
                    416:          ELSE
                    417:             TRANST = 'N'
                    418:          END IF
                    419:          IF( DEFAULTSIGNS ) THEN
                    420:             SIGNST = 'O'
                    421:          ELSE
                    422:             SIGNST = 'D'
                    423:          END IF
                    424:          CALL ZUNCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, M,
                    425:      $                Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22,
                    426:      $                LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1,
                    427:      $                U2, LDU2, WORK, LWORK, RWORK, LRWORK, IWORK,
                    428:      $                INFO )
                    429:          RETURN
                    430:       END IF
                    431: *
                    432: *     Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if
                    433: *     convenient
                    434: *
                    435:       IF( INFO .EQ. 0 .AND. M-Q .LT. Q ) THEN
                    436:          IF( DEFAULTSIGNS ) THEN
                    437:             SIGNST = 'O'
                    438:          ELSE
                    439:             SIGNST = 'D'
                    440:          END IF
                    441:          CALL ZUNCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M,
                    442:      $                M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11,
                    443:      $                LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T,
                    444:      $                LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK, INFO )
                    445:          RETURN
                    446:       END IF
                    447: *
                    448: *     Compute workspace
                    449: *
                    450:       IF( INFO .EQ. 0 ) THEN
                    451: *
                    452: *        Real workspace
                    453: *
                    454:          IPHI = 2
                    455:          IB11D = IPHI + MAX( 1, Q - 1 )
                    456:          IB11E = IB11D + MAX( 1, Q )
                    457:          IB12D = IB11E + MAX( 1, Q - 1 )
                    458:          IB12E = IB12D + MAX( 1, Q )
                    459:          IB21D = IB12E + MAX( 1, Q - 1 )
                    460:          IB21E = IB21D + MAX( 1, Q )
                    461:          IB22D = IB21E + MAX( 1, Q - 1 )
                    462:          IB22E = IB22D + MAX( 1, Q )
                    463:          IBBCSD = IB22E + MAX( 1, Q - 1 )
                    464:          CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, 0,
                    465:      $                0, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, 0,
                    466:      $                0, 0, 0, 0, 0, 0, 0, RWORK, -1, CHILDINFO )
                    467:          LBBCSDWORKOPT = INT( RWORK(1) )
                    468:          LBBCSDWORKMIN = LBBCSDWORKOPT
                    469:          LRWORKOPT = IBBCSD + LBBCSDWORKOPT - 1
                    470:          LRWORKMIN = IBBCSD + LBBCSDWORKMIN - 1
                    471:          RWORK(1) = LRWORKOPT
                    472: *
                    473: *        Complex workspace
                    474: *
                    475:          ITAUP1 = 2
                    476:          ITAUP2 = ITAUP1 + MAX( 1, P )
                    477:          ITAUQ1 = ITAUP2 + MAX( 1, M - P )
                    478:          ITAUQ2 = ITAUQ1 + MAX( 1, Q )
                    479:          IORGQR = ITAUQ2 + MAX( 1, M - Q )
                    480:          CALL ZUNGQR( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), 0, WORK, -1,
                    481:      $                CHILDINFO )
                    482:          LORGQRWORKOPT = INT( WORK(1) )
                    483:          LORGQRWORKMIN = MAX( 1, M - Q )
                    484:          IORGLQ = ITAUQ2 + MAX( 1, M - Q )
                    485:          CALL ZUNGLQ( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), 0, WORK, -1,
                    486:      $                CHILDINFO )
                    487:          LORGLQWORKOPT = INT( WORK(1) )
                    488:          LORGLQWORKMIN = MAX( 1, M - Q )
                    489:          IORBDB = ITAUQ2 + MAX( 1, M - Q )
                    490:          CALL ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
                    491:      $                X21, LDX21, X22, LDX22, 0, 0, 0, 0, 0, 0, WORK,
                    492:      $                -1, CHILDINFO )
                    493:          LORBDBWORKOPT = INT( WORK(1) )
                    494:          LORBDBWORKMIN = LORBDBWORKOPT
                    495:          LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT,
                    496:      $              IORBDB + LORBDBWORKOPT ) - 1
                    497:          LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN,
                    498:      $              IORBDB + LORBDBWORKMIN ) - 1
1.3       bertrand  499:          WORK(1) = MAX(LWORKOPT,LWORKMIN)
1.1       bertrand  500: *
                    501:          IF( LWORK .LT. LWORKMIN
                    502:      $       .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
                    503:             INFO = -22
                    504:          ELSE IF( LRWORK .LT. LRWORKMIN
                    505:      $            .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
                    506:             INFO = -24
                    507:          ELSE
                    508:             LORGQRWORK = LWORK - IORGQR + 1
                    509:             LORGLQWORK = LWORK - IORGLQ + 1
                    510:             LORBDBWORK = LWORK - IORBDB + 1
                    511:             LBBCSDWORK = LRWORK - IBBCSD + 1
                    512:          END IF
                    513:       END IF
                    514: *
                    515: *     Abort if any illegal arguments
                    516: *
                    517:       IF( INFO .NE. 0 ) THEN
                    518:          CALL XERBLA( 'ZUNCSD', -INFO )
                    519:          RETURN
                    520:       ELSE IF( LQUERY .OR. LRQUERY ) THEN
                    521:          RETURN
                    522:       END IF
                    523: *
                    524: *     Transform to bidiagonal block form
                    525: *
                    526:       CALL ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21,
                    527:      $             LDX21, X22, LDX22, THETA, RWORK(IPHI), WORK(ITAUP1),
                    528:      $             WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2),
                    529:      $             WORK(IORBDB), LORBDBWORK, CHILDINFO )
                    530: *
                    531: *     Accumulate Householder reflectors
                    532: *
                    533:       IF( COLMAJOR ) THEN
                    534:          IF( WANTU1 .AND. P .GT. 0 ) THEN
                    535:             CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
                    536:             CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
                    537:      $                   LORGQRWORK, INFO)
                    538:          END IF
                    539:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
                    540:             CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
                    541:             CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
                    542:      $                   WORK(IORGQR), LORGQRWORK, INFO )
                    543:          END IF
                    544:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
                    545:             CALL ZLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2),
                    546:      $                   LDV1T )
                    547:             V1T(1, 1) = ONE
                    548:             DO J = 2, Q
                    549:                V1T(1,J) = ZERO
                    550:                V1T(J,1) = ZERO
                    551:             END DO
                    552:             CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
                    553:      $                   WORK(IORGLQ), LORGLQWORK, INFO )
                    554:          END IF
                    555:          IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
                    556:             CALL ZLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T )
                    557:             CALL ZLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22,
                    558:      $                   V2T(P+1,P+1), LDV2T )
                    559:             CALL ZUNGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
                    560:      $                   WORK(IORGLQ), LORGLQWORK, INFO )
                    561:          END IF
                    562:       ELSE
                    563:          IF( WANTU1 .AND. P .GT. 0 ) THEN
                    564:             CALL ZLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 )
                    565:             CALL ZUNGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGLQ),
                    566:      $                   LORGLQWORK, INFO)
                    567:          END IF
                    568:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
                    569:             CALL ZLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 )
                    570:             CALL ZUNGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
                    571:      $                   WORK(IORGLQ), LORGLQWORK, INFO )
                    572:          END IF
                    573:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
                    574:             CALL ZLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2),
                    575:      $                   LDV1T )
                    576:             V1T(1, 1) = ONE
                    577:             DO J = 2, Q
                    578:                V1T(1,J) = ZERO
                    579:                V1T(J,1) = ZERO
                    580:             END DO
                    581:             CALL ZUNGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
                    582:      $                   WORK(IORGQR), LORGQRWORK, INFO )
                    583:          END IF
                    584:          IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
                    585:             CALL ZLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T )
                    586:             CALL ZLACPY( 'L', M-P-Q, M-P-Q, X22(P+1,Q+1), LDX22,
                    587:      $                   V2T(P+1,P+1), LDV2T )
                    588:             CALL ZUNGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
                    589:      $                   WORK(IORGQR), LORGQRWORK, INFO )
                    590:          END IF
                    591:       END IF
                    592: *
                    593: *     Compute the CSD of the matrix in bidiagonal-block form
                    594: *
                    595:       CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
                    596:      $             RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
                    597:      $             LDV2T, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
                    598:      $             RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
                    599:      $             RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD),
                    600:      $             LBBCSDWORK, INFO )
                    601: *
                    602: *     Permute rows and columns to place identity submatrices in top-
                    603: *     left corner of (1,1)-block and/or bottom-right corner of (1,2)-
                    604: *     block and/or bottom-right corner of (2,1)-block and/or top-left
                    605: *     corner of (2,2)-block 
                    606: *
                    607:       IF( Q .GT. 0 .AND. WANTU2 ) THEN
                    608:          DO I = 1, Q
                    609:             IWORK(I) = M - P - Q + I
                    610:          END DO
                    611:          DO I = Q + 1, M - P
                    612:             IWORK(I) = I - Q
                    613:          END DO
                    614:          IF( COLMAJOR ) THEN
                    615:             CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
                    616:          ELSE
                    617:             CALL ZLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK )
                    618:          END IF
                    619:       END IF
                    620:       IF( M .GT. 0 .AND. WANTV2T ) THEN
                    621:          DO I = 1, P
                    622:             IWORK(I) = M - P - Q + I
                    623:          END DO
                    624:          DO I = P + 1, M - Q
                    625:             IWORK(I) = I - P
                    626:          END DO
                    627:          IF( .NOT. COLMAJOR ) THEN
                    628:             CALL ZLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
                    629:          ELSE
                    630:             CALL ZLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
                    631:          END IF
                    632:       END IF
                    633: *
                    634:       RETURN
                    635: *
                    636: *     End ZUNCSD
                    637: *
                    638:       END
                    639: 

CVSweb interface <joel.bertrand@systella.fr>