File:  [local] / rpl / lapack / lapack / zunbdb6.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:43 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZUNBDB6
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZUNBDB6 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb6.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb6.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb6.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
   22: *                           LDQ2, WORK, LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
   26: *      $                   N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *>\verbatim
   37: *>
   38: *> ZUNBDB6 orthogonalizes the column vector
   39: *>      X = [ X1 ]
   40: *>          [ X2 ]
   41: *> with respect to the columns of
   42: *>      Q = [ Q1 ] .
   43: *>          [ Q2 ]
   44: *> The Euclidean norm of X must be one and the columns of Q must be
   45: *> orthonormal. The orthogonalized vector will be zero if and only if it
   46: *> lies entirely in the range of Q.
   47: *>
   48: *> The projection is computed with at most two iterations of the
   49: *> classical Gram-Schmidt algorithm, see
   50: *> * L. Giraud, J. Langou, M. Rozložník. "On the round-off error
   51: *>   analysis of the Gram-Schmidt algorithm with reorthogonalization."
   52: *>   2002. CERFACS Technical Report No. TR/PA/02/33. URL:
   53: *>   https://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf
   54: *>
   55: *>\endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] M1
   61: *> \verbatim
   62: *>          M1 is INTEGER
   63: *>           The dimension of X1 and the number of rows in Q1. 0 <= M1.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] M2
   67: *> \verbatim
   68: *>          M2 is INTEGER
   69: *>           The dimension of X2 and the number of rows in Q2. 0 <= M2.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] N
   73: *> \verbatim
   74: *>          N is INTEGER
   75: *>           The number of columns in Q1 and Q2. 0 <= N.
   76: *> \endverbatim
   77: *>
   78: *> \param[in,out] X1
   79: *> \verbatim
   80: *>          X1 is COMPLEX*16 array, dimension (M1)
   81: *>           On entry, the top part of the vector to be orthogonalized.
   82: *>           On exit, the top part of the projected vector.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] INCX1
   86: *> \verbatim
   87: *>          INCX1 is INTEGER
   88: *>           Increment for entries of X1.
   89: *> \endverbatim
   90: *>
   91: *> \param[in,out] X2
   92: *> \verbatim
   93: *>          X2 is COMPLEX*16 array, dimension (M2)
   94: *>           On entry, the bottom part of the vector to be
   95: *>           orthogonalized. On exit, the bottom part of the projected
   96: *>           vector.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] INCX2
  100: *> \verbatim
  101: *>          INCX2 is INTEGER
  102: *>           Increment for entries of X2.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] Q1
  106: *> \verbatim
  107: *>          Q1 is COMPLEX*16 array, dimension (LDQ1, N)
  108: *>           The top part of the orthonormal basis matrix.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] LDQ1
  112: *> \verbatim
  113: *>          LDQ1 is INTEGER
  114: *>           The leading dimension of Q1. LDQ1 >= M1.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] Q2
  118: *> \verbatim
  119: *>          Q2 is COMPLEX*16 array, dimension (LDQ2, N)
  120: *>           The bottom part of the orthonormal basis matrix.
  121: *> \endverbatim
  122: *>
  123: *> \param[in] LDQ2
  124: *> \verbatim
  125: *>          LDQ2 is INTEGER
  126: *>           The leading dimension of Q2. LDQ2 >= M2.
  127: *> \endverbatim
  128: *>
  129: *> \param[out] WORK
  130: *> \verbatim
  131: *>          WORK is COMPLEX*16 array, dimension (LWORK)
  132: *> \endverbatim
  133: *>
  134: *> \param[in] LWORK
  135: *> \verbatim
  136: *>          LWORK is INTEGER
  137: *>           The dimension of the array WORK. LWORK >= N.
  138: *> \endverbatim
  139: *>
  140: *> \param[out] INFO
  141: *> \verbatim
  142: *>          INFO is INTEGER
  143: *>           = 0:  successful exit.
  144: *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
  145: *> \endverbatim
  146: *
  147: *  Authors:
  148: *  ========
  149: *
  150: *> \author Univ. of Tennessee
  151: *> \author Univ. of California Berkeley
  152: *> \author Univ. of Colorado Denver
  153: *> \author NAG Ltd.
  154: *
  155: *> \ingroup complex16OTHERcomputational
  156: *
  157: *  =====================================================================
  158:       SUBROUTINE ZUNBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
  159:      $                    LDQ2, WORK, LWORK, INFO )
  160: *
  161: *  -- LAPACK computational routine --
  162: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  163: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  164: *
  165: *     .. Scalar Arguments ..
  166:       INTEGER            INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
  167:      $                   N
  168: *     ..
  169: *     .. Array Arguments ..
  170:       COMPLEX*16         Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
  171: *     ..
  172: *
  173: *  =====================================================================
  174: *
  175: *     .. Parameters ..
  176:       DOUBLE PRECISION   ALPHA, REALONE, REALZERO
  177:       PARAMETER          ( ALPHA = 0.01D0, REALONE = 1.0D0,
  178:      $                     REALZERO = 0.0D0 )
  179:       COMPLEX*16         NEGONE, ONE, ZERO
  180:       PARAMETER          ( NEGONE = (-1.0D0,0.0D0), ONE = (1.0D0,0.0D0),
  181:      $                     ZERO = (0.0D0,0.0D0) )
  182: *     ..
  183: *     .. Local Scalars ..
  184:       INTEGER            I, IX
  185:       DOUBLE PRECISION   EPS, NORM, NORM_NEW, SCL, SSQ
  186: *     ..
  187: *     .. External Functions ..
  188:       DOUBLE PRECISION   DLAMCH
  189: *     ..
  190: *     .. External Subroutines ..
  191:       EXTERNAL           ZGEMV, ZLASSQ, XERBLA
  192: *     ..
  193: *     .. Intrinsic Function ..
  194:       INTRINSIC          MAX
  195: *     ..
  196: *     .. Executable Statements ..
  197: *
  198: *     Test input arguments
  199: *
  200:       INFO = 0
  201:       IF( M1 .LT. 0 ) THEN
  202:          INFO = -1
  203:       ELSE IF( M2 .LT. 0 ) THEN
  204:          INFO = -2
  205:       ELSE IF( N .LT. 0 ) THEN
  206:          INFO = -3
  207:       ELSE IF( INCX1 .LT. 1 ) THEN
  208:          INFO = -5
  209:       ELSE IF( INCX2 .LT. 1 ) THEN
  210:          INFO = -7
  211:       ELSE IF( LDQ1 .LT. MAX( 1, M1 ) ) THEN
  212:          INFO = -9
  213:       ELSE IF( LDQ2 .LT. MAX( 1, M2 ) ) THEN
  214:          INFO = -11
  215:       ELSE IF( LWORK .LT. N ) THEN
  216:          INFO = -13
  217:       END IF
  218: *
  219:       IF( INFO .NE. 0 ) THEN
  220:          CALL XERBLA( 'ZUNBDB6', -INFO )
  221:          RETURN
  222:       END IF
  223: *
  224:       EPS = DLAMCH( 'Precision' )
  225: *
  226: *     First, project X onto the orthogonal complement of Q's column
  227: *     space
  228: *
  229: *     Christoph Conrads: In debugging mode the norm should be computed
  230: *     and an assertion added comparing the norm with one. Alas, Fortran
  231: *     never made it into 1989 when assert() was introduced into the C
  232: *     programming language.
  233:       NORM = REALONE
  234: *
  235:       IF( M1 .EQ. 0 ) THEN
  236:          DO I = 1, N
  237:             WORK(I) = ZERO
  238:          END DO
  239:       ELSE
  240:          CALL ZGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
  241:      $               1 )
  242:       END IF
  243: *
  244:       CALL ZGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
  245: *
  246:       CALL ZGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
  247:      $            INCX1 )
  248:       CALL ZGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
  249:      $            INCX2 )
  250: *
  251:       SCL = REALZERO
  252:       SSQ = REALZERO
  253:       CALL ZLASSQ( M1, X1, INCX1, SCL, SSQ )
  254:       CALL ZLASSQ( M2, X2, INCX2, SCL, SSQ )
  255:       NORM_NEW = SCL * SQRT(SSQ)
  256: *
  257: *     If projection is sufficiently large in norm, then stop.
  258: *     If projection is zero, then stop.
  259: *     Otherwise, project again.
  260: *
  261:       IF( NORM_NEW .GE. ALPHA * NORM ) THEN
  262:          RETURN
  263:       END IF
  264: *
  265:       IF( NORM_NEW .LE. N * EPS * NORM ) THEN
  266:          DO IX = 1, 1 + (M1-1)*INCX1, INCX1
  267:            X1( IX ) = ZERO
  268:          END DO
  269:          DO IX = 1, 1 + (M2-1)*INCX2, INCX2
  270:            X2( IX ) = ZERO
  271:          END DO
  272:          RETURN
  273:       END IF
  274: *
  275:       NORM = NORM_NEW
  276: *
  277:       DO I = 1, N
  278:          WORK(I) = ZERO
  279:       END DO
  280: *
  281:       IF( M1 .EQ. 0 ) THEN
  282:          DO I = 1, N
  283:             WORK(I) = ZERO
  284:          END DO
  285:       ELSE
  286:          CALL ZGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
  287:      $               1 )
  288:       END IF
  289: *
  290:       CALL ZGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
  291: *
  292:       CALL ZGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
  293:      $            INCX1 )
  294:       CALL ZGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
  295:      $            INCX2 )
  296: *
  297:       SCL = REALZERO
  298:       SSQ = REALZERO
  299:       CALL ZLASSQ( M1, X1, INCX1, SCL, SSQ )
  300:       CALL ZLASSQ( M2, X2, INCX2, SCL, SSQ )
  301:       NORM_NEW = SCL * SQRT(SSQ)
  302: *
  303: *     If second projection is sufficiently large in norm, then do
  304: *     nothing more. Alternatively, if it shrunk significantly, then
  305: *     truncate it to zero.
  306: *
  307:       IF( NORM_NEW .LT. ALPHA * NORM ) THEN
  308:          DO IX = 1, 1 + (M1-1)*INCX1, INCX1
  309:             X1(IX) = ZERO
  310:          END DO
  311:          DO IX = 1, 1 + (M2-1)*INCX2, INCX2
  312:             X2(IX) = ZERO
  313:          END DO
  314:       END IF
  315: *
  316:       RETURN
  317: *
  318: *     End of ZUNBDB6
  319: *
  320:       END

CVSweb interface <joel.bertrand@systella.fr>