Annotation of rpl/lapack/lapack/zunbdb5.f, revision 1.2

1.1       bertrand    1: *> \brief \b ZUNBDB5
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZUNBDB5 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb5.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb5.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb5.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZUNBDB5( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
                     22: *                           LDQ2, WORK, LWORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
                     26: *      $                   N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       COMPLEX*16         Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
                     30: *       ..
                     31: *  
                     32: * 
                     33: *> \par Purpose:
                     34: *> =============
                     35: *>
                     36: *>\verbatim
                     37: *>
                     38: *> ZUNBDB5 orthogonalizes the column vector
                     39: *>      X = [ X1 ]
                     40: *>          [ X2 ]
                     41: *> with respect to the columns of
                     42: *>      Q = [ Q1 ] .
                     43: *>          [ Q2 ]
                     44: *> The columns of Q must be orthonormal.
                     45: *>
                     46: *> If the projection is zero according to Kahan's "twice is enough"
                     47: *> criterion, then some other vector from the orthogonal complement
                     48: *> is returned. This vector is chosen in an arbitrary but deterministic
                     49: *> way.
                     50: *>
                     51: *>\endverbatim
                     52: *
                     53: *  Arguments:
                     54: *  ==========
                     55: *
                     56: *> \param[in] M1
                     57: *> \verbatim
                     58: *>          M1 is INTEGER
                     59: *>           The dimension of X1 and the number of rows in Q1. 0 <= M1.
                     60: *> \endverbatim
                     61: *>
                     62: *> \param[in] M2
                     63: *> \verbatim
                     64: *>          M2 is INTEGER
                     65: *>           The dimension of X2 and the number of rows in Q2. 0 <= M2.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] N
                     69: *> \verbatim
                     70: *>          N is INTEGER
                     71: *>           The number of columns in Q1 and Q2. 0 <= N.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in,out] X1
                     75: *> \verbatim
                     76: *>          X1 is COMPLEX*16 array, dimension (M1)
                     77: *>           On entry, the top part of the vector to be orthogonalized.
                     78: *>           On exit, the top part of the projected vector.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] INCX1
                     82: *> \verbatim
                     83: *>          INCX1 is INTEGER
                     84: *>           Increment for entries of X1.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in,out] X2
                     88: *> \verbatim
                     89: *>          X2 is COMPLEX*16 array, dimension (M2)
                     90: *>           On entry, the bottom part of the vector to be
                     91: *>           orthogonalized. On exit, the bottom part of the projected
                     92: *>           vector.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] INCX2
                     96: *> \verbatim
                     97: *>          INCX2 is INTEGER
                     98: *>           Increment for entries of X2.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] Q1
                    102: *> \verbatim
                    103: *>          Q1 is COMPLEX*16 array, dimension (LDQ1, N)
                    104: *>           The top part of the orthonormal basis matrix.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] LDQ1
                    108: *> \verbatim
                    109: *>          LDQ1 is INTEGER
                    110: *>           The leading dimension of Q1. LDQ1 >= M1.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in] Q2
                    114: *> \verbatim
                    115: *>          Q2 is COMPLEX*16 array, dimension (LDQ2, N)
                    116: *>           The bottom part of the orthonormal basis matrix.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in] LDQ2
                    120: *> \verbatim
                    121: *>          LDQ2 is INTEGER
                    122: *>           The leading dimension of Q2. LDQ2 >= M2.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[out] WORK
                    126: *> \verbatim
                    127: *>          WORK is COMPLEX*16 array, dimension (LWORK)
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[in] LWORK
                    131: *> \verbatim
                    132: *>          LWORK is INTEGER
                    133: *>           The dimension of the array WORK. LWORK >= N.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[out] INFO
                    137: *> \verbatim
                    138: *>          INFO is INTEGER
                    139: *>           = 0:  successful exit.
                    140: *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
                    141: *> \endverbatim
                    142: *
                    143: *  Authors:
                    144: *  ========
                    145: *
                    146: *> \author Univ. of Tennessee 
                    147: *> \author Univ. of California Berkeley 
                    148: *> \author Univ. of Colorado Denver 
                    149: *> \author NAG Ltd. 
                    150: *
                    151: *> \date July 2012
                    152: *
                    153: *> \ingroup complex16OTHERcomputational
                    154: *
                    155: *  =====================================================================
                    156:       SUBROUTINE ZUNBDB5( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
                    157:      $                    LDQ2, WORK, LWORK, INFO )
                    158: *
                    159: *  -- LAPACK computational routine (version 3.5.0) --
                    160: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    161: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    162: *     July 2012
                    163: *
                    164: *     .. Scalar Arguments ..
                    165:       INTEGER            INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
                    166:      $                   N
                    167: *     ..
                    168: *     .. Array Arguments ..
                    169:       COMPLEX*16         Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
                    170: *     ..
                    171: *
                    172: *  =====================================================================
                    173: *
                    174: *     .. Parameters ..
                    175:       COMPLEX*16         ONE, ZERO
                    176:       PARAMETER          ( ONE = (1.0D0,0.0D0), ZERO = (0.0D0,0.0D0) )
                    177: *     ..
                    178: *     .. Local Scalars ..
                    179:       INTEGER            CHILDINFO, I, J
                    180: *     ..
                    181: *     .. External Subroutines ..
                    182:       EXTERNAL           ZUNBDB6, XERBLA
                    183: *     ..
                    184: *     .. External Functions ..
                    185:       DOUBLE PRECISION   DZNRM2
                    186:       EXTERNAL           DZNRM2
                    187: *     ..
                    188: *     .. Intrinsic Function ..
                    189:       INTRINSIC          MAX
                    190: *     ..
                    191: *     .. Executable Statements ..
                    192: *
                    193: *     Test input arguments
                    194: *
                    195:       INFO = 0
                    196:       IF( M1 .LT. 0 ) THEN
                    197:          INFO = -1
                    198:       ELSE IF( M2 .LT. 0 ) THEN
                    199:          INFO = -2
                    200:       ELSE IF( N .LT. 0 ) THEN
                    201:          INFO = -3
                    202:       ELSE IF( INCX1 .LT. 1 ) THEN
                    203:          INFO = -5
                    204:       ELSE IF( INCX2 .LT. 1 ) THEN
                    205:          INFO = -7
                    206:       ELSE IF( LDQ1 .LT. MAX( 1, M1 ) ) THEN
                    207:          INFO = -9
                    208:       ELSE IF( LDQ2 .LT. MAX( 1, M2 ) ) THEN
                    209:          INFO = -11
                    210:       ELSE IF( LWORK .LT. N ) THEN
                    211:          INFO = -13
                    212:       END IF
                    213: *
                    214:       IF( INFO .NE. 0 ) THEN
                    215:          CALL XERBLA( 'ZUNBDB5', -INFO )
                    216:          RETURN
                    217:       END IF
                    218: *
                    219: *     Project X onto the orthogonal complement of Q
                    220: *
                    221:       CALL ZUNBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2, LDQ2,
                    222:      $              WORK, LWORK, CHILDINFO )
                    223: *
                    224: *     If the projection is nonzero, then return
                    225: *
                    226:       IF( DZNRM2(M1,X1,INCX1) .NE. ZERO
                    227:      $    .OR. DZNRM2(M2,X2,INCX2) .NE. ZERO ) THEN
                    228:          RETURN
                    229:       END IF
                    230: *
                    231: *     Project each standard basis vector e_1,...,e_M1 in turn, stopping
                    232: *     when a nonzero projection is found
                    233: *
                    234:       DO I = 1, M1
                    235:          DO J = 1, M1
                    236:             X1(J) = ZERO
                    237:          END DO
                    238:          X1(I) = ONE
                    239:          DO J = 1, M2
                    240:             X2(J) = ZERO
                    241:          END DO
                    242:          CALL ZUNBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
                    243:      $                 LDQ2, WORK, LWORK, CHILDINFO )
                    244:          IF( DZNRM2(M1,X1,INCX1) .NE. ZERO
                    245:      $       .OR. DZNRM2(M2,X2,INCX2) .NE. ZERO ) THEN
                    246:             RETURN
                    247:          END IF
                    248:       END DO
                    249: *
                    250: *     Project each standard basis vector e_(M1+1),...,e_(M1+M2) in turn,
                    251: *     stopping when a nonzero projection is found
                    252: *
                    253:       DO I = 1, M2
                    254:          DO J = 1, M1
                    255:             X1(J) = ZERO
                    256:          END DO
                    257:          DO J = 1, M2
                    258:             X2(J) = ZERO
                    259:          END DO
                    260:          X2(I) = ONE
                    261:          CALL ZUNBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
                    262:      $                 LDQ2, WORK, LWORK, CHILDINFO )
                    263:          IF( DZNRM2(M1,X1,INCX1) .NE. ZERO
                    264:      $       .OR. DZNRM2(M2,X2,INCX2) .NE. ZERO ) THEN
                    265:             RETURN
                    266:          END IF
                    267:       END DO
                    268: *
                    269:       RETURN
                    270: *
                    271: *     End of ZUNBDB5
                    272: *      
                    273:       END
                    274: 

CVSweb interface <joel.bertrand@systella.fr>