Annotation of rpl/lapack/lapack/zunbdb4.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b ZUNBDB4
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZUNBDB4 + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb4.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb4.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb4.f">
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
        !            22: *                           TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK,
        !            23: *                           INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       DOUBLE PRECISION   PHI(*), THETA(*)
        !            30: *       COMPLEX*16         PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*),
        !            31: *      $                   WORK(*), X11(LDX11,*), X21(LDX21,*)
        !            32: *       ..
        !            33: *  
        !            34: * 
        !            35: *> \par Purpose:
        !            36: *> =============
        !            37: *>
        !            38: *>\verbatim
        !            39: *>
        !            40: *> ZUNBDB4 simultaneously bidiagonalizes the blocks of a tall and skinny
        !            41: *> matrix X with orthonomal columns:
        !            42: *>
        !            43: *>                            [ B11 ]
        !            44: *>      [ X11 ]   [ P1 |    ] [  0  ]
        !            45: *>      [-----] = [---------] [-----] Q1**T .
        !            46: *>      [ X21 ]   [    | P2 ] [ B21 ]
        !            47: *>                            [  0  ]
        !            48: *>
        !            49: *> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-Q must be no larger than P,
        !            50: *> M-P, or Q. Routines ZUNBDB1, ZUNBDB2, and ZUNBDB3 handle cases in
        !            51: *> which M-Q is not the minimum dimension.
        !            52: *>
        !            53: *> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
        !            54: *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
        !            55: *> Householder vectors.
        !            56: *>
        !            57: *> B11 and B12 are (M-Q)-by-(M-Q) bidiagonal matrices represented
        !            58: *> implicitly by angles THETA, PHI.
        !            59: *>
        !            60: *>\endverbatim
        !            61: *
        !            62: *  Arguments:
        !            63: *  ==========
        !            64: *
        !            65: *> \param[in] M
        !            66: *> \verbatim
        !            67: *>          M is INTEGER
        !            68: *>           The number of rows X11 plus the number of rows in X21.
        !            69: *> \endverbatim
        !            70: *>
        !            71: *> \param[in] P
        !            72: *> \verbatim
        !            73: *>          P is INTEGER
        !            74: *>           The number of rows in X11. 0 <= P <= M.
        !            75: *> \endverbatim
        !            76: *>
        !            77: *> \param[in] Q
        !            78: *> \verbatim
        !            79: *>          Q is INTEGER
        !            80: *>           The number of columns in X11 and X21. 0 <= Q <= M and
        !            81: *>           M-Q <= min(P,M-P,Q).
        !            82: *> \endverbatim
        !            83: *>
        !            84: *> \param[in,out] X11
        !            85: *> \verbatim
        !            86: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
        !            87: *>           On entry, the top block of the matrix X to be reduced. On
        !            88: *>           exit, the columns of tril(X11) specify reflectors for P1 and
        !            89: *>           the rows of triu(X11,1) specify reflectors for Q1.
        !            90: *> \endverbatim
        !            91: *>
        !            92: *> \param[in] LDX11
        !            93: *> \verbatim
        !            94: *>          LDX11 is INTEGER
        !            95: *>           The leading dimension of X11. LDX11 >= P.
        !            96: *> \endverbatim
        !            97: *>
        !            98: *> \param[in,out] X21
        !            99: *> \verbatim
        !           100: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
        !           101: *>           On entry, the bottom block of the matrix X to be reduced. On
        !           102: *>           exit, the columns of tril(X21) specify reflectors for P2.
        !           103: *> \endverbatim
        !           104: *>
        !           105: *> \param[in] LDX21
        !           106: *> \verbatim
        !           107: *>          LDX21 is INTEGER
        !           108: *>           The leading dimension of X21. LDX21 >= M-P.
        !           109: *> \endverbatim
        !           110: *>
        !           111: *> \param[out] THETA
        !           112: *> \verbatim
        !           113: *>          THETA is DOUBLE PRECISION array, dimension (Q)
        !           114: *>           The entries of the bidiagonal blocks B11, B21 are defined by
        !           115: *>           THETA and PHI. See Further Details.
        !           116: *> \endverbatim
        !           117: *>
        !           118: *> \param[out] PHI
        !           119: *> \verbatim
        !           120: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
        !           121: *>           The entries of the bidiagonal blocks B11, B21 are defined by
        !           122: *>           THETA and PHI. See Further Details.
        !           123: *> \endverbatim
        !           124: *>
        !           125: *> \param[out] TAUP1
        !           126: *> \verbatim
        !           127: *>          TAUP1 is COMPLEX*16 array, dimension (P)
        !           128: *>           The scalar factors of the elementary reflectors that define
        !           129: *>           P1.
        !           130: *> \endverbatim
        !           131: *>
        !           132: *> \param[out] TAUP2
        !           133: *> \verbatim
        !           134: *>          TAUP2 is COMPLEX*16 array, dimension (M-P)
        !           135: *>           The scalar factors of the elementary reflectors that define
        !           136: *>           P2.
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[out] TAUQ1
        !           140: *> \verbatim
        !           141: *>          TAUQ1 is COMPLEX*16 array, dimension (Q)
        !           142: *>           The scalar factors of the elementary reflectors that define
        !           143: *>           Q1.
        !           144: *> \endverbatim
        !           145: *>
        !           146: *> \param[out] PHANTOM
        !           147: *> \verbatim
        !           148: *>          PHANTOM is COMPLEX*16 array, dimension (M)
        !           149: *>           The routine computes an M-by-1 column vector Y that is
        !           150: *>           orthogonal to the columns of [ X11; X21 ]. PHANTOM(1:P) and
        !           151: *>           PHANTOM(P+1:M) contain Householder vectors for Y(1:P) and
        !           152: *>           Y(P+1:M), respectively.
        !           153: *> \endverbatim
        !           154: *>
        !           155: *> \param[out] WORK
        !           156: *> \verbatim
        !           157: *>          WORK is COMPLEX*16 array, dimension (LWORK)
        !           158: *> \endverbatim
        !           159: *>
        !           160: *> \param[in] LWORK
        !           161: *> \verbatim
        !           162: *>          LWORK is INTEGER
        !           163: *>           The dimension of the array WORK. LWORK >= M-Q.
        !           164: *> 
        !           165: *>           If LWORK = -1, then a workspace query is assumed; the routine
        !           166: *>           only calculates the optimal size of the WORK array, returns
        !           167: *>           this value as the first entry of the WORK array, and no error
        !           168: *>           message related to LWORK is issued by XERBLA.
        !           169: *> \endverbatim
        !           170: *>
        !           171: *> \param[out] INFO
        !           172: *> \verbatim
        !           173: *>          INFO is INTEGER
        !           174: *>           = 0:  successful exit.
        !           175: *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           176: *> \endverbatim
        !           177: *
        !           178: *  Authors:
        !           179: *  ========
        !           180: *
        !           181: *> \author Univ. of Tennessee 
        !           182: *> \author Univ. of California Berkeley 
        !           183: *> \author Univ. of Colorado Denver 
        !           184: *> \author NAG Ltd. 
        !           185: *
        !           186: *> \date July 2012
        !           187: *
        !           188: *> \ingroup complex16OTHERcomputational
        !           189: *
        !           190: *> \par Further Details:
        !           191: *  =====================
        !           192: *>
        !           193: *> \verbatim
        !           194: *>
        !           195: *>  The upper-bidiagonal blocks B11, B21 are represented implicitly by
        !           196: *>  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
        !           197: *>  in each bidiagonal band is a product of a sine or cosine of a THETA
        !           198: *>  with a sine or cosine of a PHI. See [1] or ZUNCSD for details.
        !           199: *>
        !           200: *>  P1, P2, and Q1 are represented as products of elementary reflectors.
        !           201: *>  See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR
        !           202: *>  and ZUNGLQ.
        !           203: *> \endverbatim
        !           204: *
        !           205: *> \par References:
        !           206: *  ================
        !           207: *>
        !           208: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
        !           209: *>      Algorithms, 50(1):33-65, 2009.
        !           210: *>
        !           211: *  =====================================================================
        !           212:       SUBROUTINE ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
        !           213:      $                    TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK,
        !           214:      $                    INFO )
        !           215: *
        !           216: *  -- LAPACK computational routine (version 3.5.0) --
        !           217: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           218: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           219: *     July 2012
        !           220: *
        !           221: *     .. Scalar Arguments ..
        !           222:       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
        !           223: *     ..
        !           224: *     .. Array Arguments ..
        !           225:       DOUBLE PRECISION   PHI(*), THETA(*)
        !           226:       COMPLEX*16         PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*),
        !           227:      $                   WORK(*), X11(LDX11,*), X21(LDX21,*)
        !           228: *     ..
        !           229: *
        !           230: *  ====================================================================
        !           231: *
        !           232: *     .. Parameters ..
        !           233:       COMPLEX*16         NEGONE, ONE, ZERO
        !           234:       PARAMETER          ( NEGONE = (-1.0D0,0.0D0), ONE = (1.0D0,0.0D0),
        !           235:      $                     ZERO = (0.0D0,0.0D0) )
        !           236: *     ..
        !           237: *     .. Local Scalars ..
        !           238:       DOUBLE PRECISION   C, S
        !           239:       INTEGER            CHILDINFO, I, ILARF, IORBDB5, J, LLARF,
        !           240:      $                   LORBDB5, LWORKMIN, LWORKOPT
        !           241:       LOGICAL            LQUERY
        !           242: *     ..
        !           243: *     .. External Subroutines ..
        !           244:       EXTERNAL           ZLARF, ZLARFGP, ZUNBDB5, ZDROT, ZSCAL, XERBLA
        !           245: *     ..
        !           246: *     .. External Functions ..
        !           247:       DOUBLE PRECISION   DZNRM2
        !           248:       EXTERNAL           DZNRM2
        !           249: *     ..
        !           250: *     .. Intrinsic Function ..
        !           251:       INTRINSIC          ATAN2, COS, MAX, SIN, SQRT
        !           252: *     ..
        !           253: *     .. Executable Statements ..
        !           254: *
        !           255: *     Test input arguments
        !           256: *
        !           257:       INFO = 0
        !           258:       LQUERY = LWORK .EQ. -1
        !           259: *
        !           260:       IF( M .LT. 0 ) THEN
        !           261:          INFO = -1
        !           262:       ELSE IF( P .LT. M-Q .OR. M-P .LT. M-Q ) THEN
        !           263:          INFO = -2
        !           264:       ELSE IF( Q .LT. M-Q .OR. Q .GT. M ) THEN
        !           265:          INFO = -3
        !           266:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
        !           267:          INFO = -5
        !           268:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
        !           269:          INFO = -7
        !           270:       END IF
        !           271: *
        !           272: *     Compute workspace
        !           273: *
        !           274:       IF( INFO .EQ. 0 ) THEN
        !           275:          ILARF = 2
        !           276:          LLARF = MAX( Q-1, P-1, M-P-1 )
        !           277:          IORBDB5 = 2
        !           278:          LORBDB5 = Q
        !           279:          LWORKOPT = ILARF + LLARF - 1
        !           280:          LWORKOPT = MAX( LWORKOPT, IORBDB5 + LORBDB5 - 1 )
        !           281:          LWORKMIN = LWORKOPT
        !           282:          WORK(1) = LWORKOPT
        !           283:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
        !           284:            INFO = -14
        !           285:          END IF
        !           286:       END IF
        !           287:       IF( INFO .NE. 0 ) THEN
        !           288:          CALL XERBLA( 'ZUNBDB4', -INFO )
        !           289:          RETURN
        !           290:       ELSE IF( LQUERY ) THEN
        !           291:          RETURN
        !           292:       END IF
        !           293: *
        !           294: *     Reduce columns 1, ..., M-Q of X11 and X21
        !           295: *
        !           296:       DO I = 1, M-Q
        !           297: *
        !           298:          IF( I .EQ. 1 ) THEN
        !           299:             DO J = 1, M
        !           300:                PHANTOM(J) = ZERO
        !           301:             END DO
        !           302:             CALL ZUNBDB5( P, M-P, Q, PHANTOM(1), 1, PHANTOM(P+1), 1,
        !           303:      $                    X11, LDX11, X21, LDX21, WORK(IORBDB5),
        !           304:      $                    LORBDB5, CHILDINFO )
        !           305:             CALL ZSCAL( P, NEGONE, PHANTOM(1), 1 )
        !           306:             CALL ZLARFGP( P, PHANTOM(1), PHANTOM(2), 1, TAUP1(1) )
        !           307:             CALL ZLARFGP( M-P, PHANTOM(P+1), PHANTOM(P+2), 1, TAUP2(1) )
        !           308:             THETA(I) = ATAN2( DBLE( PHANTOM(1) ), DBLE( PHANTOM(P+1) ) )
        !           309:             C = COS( THETA(I) )
        !           310:             S = SIN( THETA(I) )
        !           311:             PHANTOM(1) = ONE
        !           312:             PHANTOM(P+1) = ONE
        !           313:             CALL ZLARF( 'L', P, Q, PHANTOM(1), 1, DCONJG(TAUP1(1)), X11,
        !           314:      $                  LDX11, WORK(ILARF) )
        !           315:             CALL ZLARF( 'L', M-P, Q, PHANTOM(P+1), 1, DCONJG(TAUP2(1)),
        !           316:      $                  X21, LDX21, WORK(ILARF) )
        !           317:          ELSE
        !           318:             CALL ZUNBDB5( P-I+1, M-P-I+1, Q-I+1, X11(I,I-1), 1,
        !           319:      $                    X21(I,I-1), 1, X11(I,I), LDX11, X21(I,I),
        !           320:      $                    LDX21, WORK(IORBDB5), LORBDB5, CHILDINFO )
        !           321:             CALL ZSCAL( P-I+1, NEGONE, X11(I,I-1), 1 )
        !           322:             CALL ZLARFGP( P-I+1, X11(I,I-1), X11(I+1,I-1), 1, TAUP1(I) )
        !           323:             CALL ZLARFGP( M-P-I+1, X21(I,I-1), X21(I+1,I-1), 1,
        !           324:      $                    TAUP2(I) )
        !           325:             THETA(I) = ATAN2( DBLE( X11(I,I-1) ), DBLE( X21(I,I-1) ) )
        !           326:             C = COS( THETA(I) )
        !           327:             S = SIN( THETA(I) )
        !           328:             X11(I,I-1) = ONE
        !           329:             X21(I,I-1) = ONE
        !           330:             CALL ZLARF( 'L', P-I+1, Q-I+1, X11(I,I-1), 1,
        !           331:      $                  DCONJG(TAUP1(I)), X11(I,I), LDX11, WORK(ILARF) )
        !           332:             CALL ZLARF( 'L', M-P-I+1, Q-I+1, X21(I,I-1), 1,
        !           333:      $                  DCONJG(TAUP2(I)), X21(I,I), LDX21, WORK(ILARF) )
        !           334:          END IF
        !           335: *
        !           336:          CALL ZDROT( Q-I+1, X11(I,I), LDX11, X21(I,I), LDX21, S, -C )
        !           337:          CALL ZLACGV( Q-I+1, X21(I,I), LDX21 )
        !           338:          CALL ZLARFGP( Q-I+1, X21(I,I), X21(I,I+1), LDX21, TAUQ1(I) )
        !           339:          C = DBLE( X21(I,I) )
        !           340:          X21(I,I) = ONE
        !           341:          CALL ZLARF( 'R', P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
        !           342:      $               X11(I+1,I), LDX11, WORK(ILARF) )
        !           343:          CALL ZLARF( 'R', M-P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
        !           344:      $               X21(I+1,I), LDX21, WORK(ILARF) )
        !           345:          CALL ZLACGV( Q-I+1, X21(I,I), LDX21 )
        !           346:          IF( I .LT. M-Q ) THEN
        !           347:             S = SQRT( DZNRM2( P-I, X11(I+1,I), 1, X11(I+1,I),
        !           348:      $          1 )**2 + DZNRM2( M-P-I, X21(I+1,I), 1, X21(I+1,I),
        !           349:      $          1 )**2 )
        !           350:             PHI(I) = ATAN2( S, C )
        !           351:          END IF
        !           352: *
        !           353:       END DO
        !           354: *
        !           355: *     Reduce the bottom-right portion of X11 to [ I 0 ]
        !           356: *
        !           357:       DO I = M - Q + 1, P
        !           358:          CALL ZLACGV( Q-I+1, X11(I,I), LDX11 )
        !           359:          CALL ZLARFGP( Q-I+1, X11(I,I), X11(I,I+1), LDX11, TAUQ1(I) )
        !           360:          X11(I,I) = ONE
        !           361:          CALL ZLARF( 'R', P-I, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
        !           362:      $               X11(I+1,I), LDX11, WORK(ILARF) )
        !           363:          CALL ZLARF( 'R', Q-P, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
        !           364:      $               X21(M-Q+1,I), LDX21, WORK(ILARF) )
        !           365:          CALL ZLACGV( Q-I+1, X11(I,I), LDX11 )
        !           366:       END DO
        !           367: *
        !           368: *     Reduce the bottom-right portion of X21 to [ 0 I ]
        !           369: *
        !           370:       DO I = P + 1, Q
        !           371:          CALL ZLACGV( Q-I+1, X21(M-Q+I-P,I), LDX21 )
        !           372:          CALL ZLARFGP( Q-I+1, X21(M-Q+I-P,I), X21(M-Q+I-P,I+1), LDX21,
        !           373:      $                 TAUQ1(I) )
        !           374:          X21(M-Q+I-P,I) = ONE
        !           375:          CALL ZLARF( 'R', Q-I, Q-I+1, X21(M-Q+I-P,I), LDX21, TAUQ1(I),
        !           376:      $               X21(M-Q+I-P+1,I), LDX21, WORK(ILARF) )
        !           377:          CALL ZLACGV( Q-I+1, X21(M-Q+I-P,I), LDX21 )
        !           378:       END DO
        !           379: *
        !           380:       RETURN
        !           381: *
        !           382: *     End of ZUNBDB4
        !           383: *
        !           384:       END
        !           385: 

CVSweb interface <joel.bertrand@systella.fr>