File:  [local] / rpl / lapack / lapack / zunbdb2.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:32 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b ZUNBDB2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZUNBDB2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
   22: *                           TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   PHI(*), THETA(*)
   29: *       COMPLEX*16         TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
   30: *      $                   X11(LDX11,*), X21(LDX21,*)
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *> =============
   36: *>
   37: *>\verbatim
   38: *>
   39: *> ZUNBDB2 simultaneously bidiagonalizes the blocks of a tall and skinny
   40: *> matrix X with orthonomal columns:
   41: *>
   42: *>                            [ B11 ]
   43: *>      [ X11 ]   [ P1 |    ] [  0  ]
   44: *>      [-----] = [---------] [-----] Q1**T .
   45: *>      [ X21 ]   [    | P2 ] [ B21 ]
   46: *>                            [  0  ]
   47: *>
   48: *> X11 is P-by-Q, and X21 is (M-P)-by-Q. P must be no larger than M-P,
   49: *> Q, or M-Q. Routines ZUNBDB1, ZUNBDB3, and ZUNBDB4 handle cases in
   50: *> which P is not the minimum dimension.
   51: *>
   52: *> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
   53: *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
   54: *> Householder vectors.
   55: *>
   56: *> B11 and B12 are P-by-P bidiagonal matrices represented implicitly by
   57: *> angles THETA, PHI.
   58: *>
   59: *>\endverbatim
   60: *
   61: *  Arguments:
   62: *  ==========
   63: *
   64: *> \param[in] M
   65: *> \verbatim
   66: *>          M is INTEGER
   67: *>           The number of rows X11 plus the number of rows in X21.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] P
   71: *> \verbatim
   72: *>          P is INTEGER
   73: *>           The number of rows in X11. 0 <= P <= min(M-P,Q,M-Q).
   74: *> \endverbatim
   75: *>
   76: *> \param[in] Q
   77: *> \verbatim
   78: *>          Q is INTEGER
   79: *>           The number of columns in X11 and X21. 0 <= Q <= M.
   80: *> \endverbatim
   81: *>
   82: *> \param[in,out] X11
   83: *> \verbatim
   84: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
   85: *>           On entry, the top block of the matrix X to be reduced. On
   86: *>           exit, the columns of tril(X11) specify reflectors for P1 and
   87: *>           the rows of triu(X11,1) specify reflectors for Q1.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] LDX11
   91: *> \verbatim
   92: *>          LDX11 is INTEGER
   93: *>           The leading dimension of X11. LDX11 >= P.
   94: *> \endverbatim
   95: *>
   96: *> \param[in,out] X21
   97: *> \verbatim
   98: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
   99: *>           On entry, the bottom block of the matrix X to be reduced. On
  100: *>           exit, the columns of tril(X21) specify reflectors for P2.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDX21
  104: *> \verbatim
  105: *>          LDX21 is INTEGER
  106: *>           The leading dimension of X21. LDX21 >= M-P.
  107: *> \endverbatim
  108: *>
  109: *> \param[out] THETA
  110: *> \verbatim
  111: *>          THETA is DOUBLE PRECISION array, dimension (Q)
  112: *>           The entries of the bidiagonal blocks B11, B21 are defined by
  113: *>           THETA and PHI. See Further Details.
  114: *> \endverbatim
  115: *>
  116: *> \param[out] PHI
  117: *> \verbatim
  118: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
  119: *>           The entries of the bidiagonal blocks B11, B21 are defined by
  120: *>           THETA and PHI. See Further Details.
  121: *> \endverbatim
  122: *>
  123: *> \param[out] TAUP1
  124: *> \verbatim
  125: *>          TAUP1 is COMPLEX*16 array, dimension (P)
  126: *>           The scalar factors of the elementary reflectors that define
  127: *>           P1.
  128: *> \endverbatim
  129: *>
  130: *> \param[out] TAUP2
  131: *> \verbatim
  132: *>          TAUP2 is COMPLEX*16 array, dimension (M-P)
  133: *>           The scalar factors of the elementary reflectors that define
  134: *>           P2.
  135: *> \endverbatim
  136: *>
  137: *> \param[out] TAUQ1
  138: *> \verbatim
  139: *>          TAUQ1 is COMPLEX*16 array, dimension (Q)
  140: *>           The scalar factors of the elementary reflectors that define
  141: *>           Q1.
  142: *> \endverbatim
  143: *>
  144: *> \param[out] WORK
  145: *> \verbatim
  146: *>          WORK is COMPLEX*16 array, dimension (LWORK)
  147: *> \endverbatim
  148: *>
  149: *> \param[in] LWORK
  150: *> \verbatim
  151: *>          LWORK is INTEGER
  152: *>           The dimension of the array WORK. LWORK >= M-Q.
  153: *>
  154: *>           If LWORK = -1, then a workspace query is assumed; the routine
  155: *>           only calculates the optimal size of the WORK array, returns
  156: *>           this value as the first entry of the WORK array, and no error
  157: *>           message related to LWORK is issued by XERBLA.
  158: *> \endverbatim
  159: *>
  160: *> \param[out] INFO
  161: *> \verbatim
  162: *>          INFO is INTEGER
  163: *>           = 0:  successful exit.
  164: *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
  165: *> \endverbatim
  166: *
  167: *  Authors:
  168: *  ========
  169: *
  170: *> \author Univ. of Tennessee
  171: *> \author Univ. of California Berkeley
  172: *> \author Univ. of Colorado Denver
  173: *> \author NAG Ltd.
  174: *
  175: *> \date July 2012
  176: *
  177: *> \ingroup complex16OTHERcomputational
  178: *
  179: *> \par Further Details:
  180: *  =====================
  181: *>
  182: *> \verbatim
  183: *>
  184: *>  The upper-bidiagonal blocks B11, B21 are represented implicitly by
  185: *>  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
  186: *>  in each bidiagonal band is a product of a sine or cosine of a THETA
  187: *>  with a sine or cosine of a PHI. See [1] or ZUNCSD for details.
  188: *>
  189: *>  P1, P2, and Q1 are represented as products of elementary reflectors.
  190: *>  See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR
  191: *>  and ZUNGLQ.
  192: *> \endverbatim
  193: *
  194: *> \par References:
  195: *  ================
  196: *>
  197: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  198: *>      Algorithms, 50(1):33-65, 2009.
  199: *>
  200: *  =====================================================================
  201:       SUBROUTINE ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
  202:      $                    TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
  203: *
  204: *  -- LAPACK computational routine (version 3.7.0) --
  205: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  206: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  207: *     July 2012
  208: *
  209: *     .. Scalar Arguments ..
  210:       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
  211: *     ..
  212: *     .. Array Arguments ..
  213:       DOUBLE PRECISION   PHI(*), THETA(*)
  214:       COMPLEX*16         TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
  215:      $                   X11(LDX11,*), X21(LDX21,*)
  216: *     ..
  217: *
  218: *  ====================================================================
  219: *
  220: *     .. Parameters ..
  221:       COMPLEX*16         NEGONE, ONE
  222:       PARAMETER          ( NEGONE = (-1.0D0,0.0D0),
  223:      $                     ONE = (1.0D0,0.0D0) )
  224: *     ..
  225: *     .. Local Scalars ..
  226:       DOUBLE PRECISION   C, S
  227:       INTEGER            CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
  228:      $                   LWORKMIN, LWORKOPT
  229:       LOGICAL            LQUERY
  230: *     ..
  231: *     .. External Subroutines ..
  232:       EXTERNAL           ZLARF, ZLARFGP, ZUNBDB5, ZDROT, ZSCAL, XERBLA
  233: *     ..
  234: *     .. External Functions ..
  235:       DOUBLE PRECISION   DZNRM2
  236:       EXTERNAL           DZNRM2
  237: *     ..
  238: *     .. Intrinsic Function ..
  239:       INTRINSIC          ATAN2, COS, MAX, SIN, SQRT
  240: *     ..
  241: *     .. Executable Statements ..
  242: *
  243: *     Test input arguments
  244: *
  245:       INFO = 0
  246:       LQUERY = LWORK .EQ. -1
  247: *
  248:       IF( M .LT. 0 ) THEN
  249:          INFO = -1
  250:       ELSE IF( P .LT. 0 .OR. P .GT. M-P ) THEN
  251:          INFO = -2
  252:       ELSE IF( Q .LT. 0 .OR. Q .LT. P .OR. M-Q .LT. P ) THEN
  253:          INFO = -3
  254:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  255:          INFO = -5
  256:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  257:          INFO = -7
  258:       END IF
  259: *
  260: *     Compute workspace
  261: *
  262:       IF( INFO .EQ. 0 ) THEN
  263:          ILARF = 2
  264:          LLARF = MAX( P-1, M-P, Q-1 )
  265:          IORBDB5 = 2
  266:          LORBDB5 = Q-1
  267:          LWORKOPT = MAX( ILARF+LLARF-1, IORBDB5+LORBDB5-1 )
  268:          LWORKMIN = LWORKOPT
  269:          WORK(1) = LWORKOPT
  270:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  271:            INFO = -14
  272:          END IF
  273:       END IF
  274:       IF( INFO .NE. 0 ) THEN
  275:          CALL XERBLA( 'ZUNBDB2', -INFO )
  276:          RETURN
  277:       ELSE IF( LQUERY ) THEN
  278:          RETURN
  279:       END IF
  280: *
  281: *     Reduce rows 1, ..., P of X11 and X21
  282: *
  283:       DO I = 1, P
  284: *
  285:          IF( I .GT. 1 ) THEN
  286:             CALL ZDROT( Q-I+1, X11(I,I), LDX11, X21(I-1,I), LDX21, C,
  287:      $                  S )
  288:          END IF
  289:          CALL ZLACGV( Q-I+1, X11(I,I), LDX11 )
  290:          CALL ZLARFGP( Q-I+1, X11(I,I), X11(I,I+1), LDX11, TAUQ1(I) )
  291:          C = DBLE( X11(I,I) )
  292:          X11(I,I) = ONE
  293:          CALL ZLARF( 'R', P-I, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
  294:      $               X11(I+1,I), LDX11, WORK(ILARF) )
  295:          CALL ZLARF( 'R', M-P-I+1, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
  296:      $               X21(I,I), LDX21, WORK(ILARF) )
  297:          CALL ZLACGV( Q-I+1, X11(I,I), LDX11 )
  298:          S = SQRT( DZNRM2( P-I, X11(I+1,I), 1 )**2
  299:      $           + DZNRM2( M-P-I+1, X21(I,I), 1 )**2 )
  300:          THETA(I) = ATAN2( S, C )
  301: *
  302:          CALL ZUNBDB5( P-I, M-P-I+1, Q-I, X11(I+1,I), 1, X21(I,I), 1,
  303:      $                 X11(I+1,I+1), LDX11, X21(I,I+1), LDX21,
  304:      $                 WORK(IORBDB5), LORBDB5, CHILDINFO )
  305:          CALL ZSCAL( P-I, NEGONE, X11(I+1,I), 1 )
  306:          CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
  307:          IF( I .LT. P ) THEN
  308:             CALL ZLARFGP( P-I, X11(I+1,I), X11(I+2,I), 1, TAUP1(I) )
  309:             PHI(I) = ATAN2( DBLE( X11(I+1,I) ), DBLE( X21(I,I) ) )
  310:             C = COS( PHI(I) )
  311:             S = SIN( PHI(I) )
  312:             X11(I+1,I) = ONE
  313:             CALL ZLARF( 'L', P-I, Q-I, X11(I+1,I), 1, DCONJG(TAUP1(I)),
  314:      $                  X11(I+1,I+1), LDX11, WORK(ILARF) )
  315:          END IF
  316:          X21(I,I) = ONE
  317:          CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, DCONJG(TAUP2(I)),
  318:      $               X21(I,I+1), LDX21, WORK(ILARF) )
  319: *
  320:       END DO
  321: *
  322: *     Reduce the bottom-right portion of X21 to the identity matrix
  323: *
  324:       DO I = P + 1, Q
  325:          CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
  326:          X21(I,I) = ONE
  327:          CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, DCONJG(TAUP2(I)),
  328:      $               X21(I,I+1), LDX21, WORK(ILARF) )
  329:       END DO
  330: *
  331:       RETURN
  332: *
  333: *     End of ZUNBDB2
  334: *
  335:       END
  336: 

CVSweb interface <joel.bertrand@systella.fr>