Annotation of rpl/lapack/lapack/zunbdb2.f, revision 1.9

1.1       bertrand    1: *> \brief \b ZUNBDB2
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.5       bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.1       bertrand    7: *
                      8: *> \htmlonly
                      9: *> Download ZUNBDB2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb2.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
                     22: *                           TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
1.5       bertrand   23: *
1.1       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   PHI(*), THETA(*)
                     29: *       COMPLEX*16         TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
                     30: *      $                   X11(LDX11,*), X21(LDX21,*)
                     31: *       ..
1.5       bertrand   32: *
                     33: *
1.1       bertrand   34: *> \par Purpose:
1.7       bertrand   35: *  =============
1.1       bertrand   36: *>
                     37: *>\verbatim
                     38: *>
                     39: *> ZUNBDB2 simultaneously bidiagonalizes the blocks of a tall and skinny
                     40: *> matrix X with orthonomal columns:
                     41: *>
                     42: *>                            [ B11 ]
                     43: *>      [ X11 ]   [ P1 |    ] [  0  ]
                     44: *>      [-----] = [---------] [-----] Q1**T .
                     45: *>      [ X21 ]   [    | P2 ] [ B21 ]
                     46: *>                            [  0  ]
                     47: *>
                     48: *> X11 is P-by-Q, and X21 is (M-P)-by-Q. P must be no larger than M-P,
                     49: *> Q, or M-Q. Routines ZUNBDB1, ZUNBDB3, and ZUNBDB4 handle cases in
                     50: *> which P is not the minimum dimension.
                     51: *>
                     52: *> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
                     53: *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
                     54: *> Householder vectors.
                     55: *>
                     56: *> B11 and B12 are P-by-P bidiagonal matrices represented implicitly by
                     57: *> angles THETA, PHI.
                     58: *>
                     59: *>\endverbatim
                     60: *
                     61: *  Arguments:
                     62: *  ==========
                     63: *
                     64: *> \param[in] M
                     65: *> \verbatim
                     66: *>          M is INTEGER
                     67: *>           The number of rows X11 plus the number of rows in X21.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] P
                     71: *> \verbatim
                     72: *>          P is INTEGER
                     73: *>           The number of rows in X11. 0 <= P <= min(M-P,Q,M-Q).
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] Q
                     77: *> \verbatim
                     78: *>          Q is INTEGER
                     79: *>           The number of columns in X11 and X21. 0 <= Q <= M.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in,out] X11
                     83: *> \verbatim
                     84: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
                     85: *>           On entry, the top block of the matrix X to be reduced. On
                     86: *>           exit, the columns of tril(X11) specify reflectors for P1 and
                     87: *>           the rows of triu(X11,1) specify reflectors for Q1.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in] LDX11
                     91: *> \verbatim
                     92: *>          LDX11 is INTEGER
                     93: *>           The leading dimension of X11. LDX11 >= P.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in,out] X21
                     97: *> \verbatim
                     98: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
                     99: *>           On entry, the bottom block of the matrix X to be reduced. On
                    100: *>           exit, the columns of tril(X21) specify reflectors for P2.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDX21
                    104: *> \verbatim
                    105: *>          LDX21 is INTEGER
                    106: *>           The leading dimension of X21. LDX21 >= M-P.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[out] THETA
                    110: *> \verbatim
                    111: *>          THETA is DOUBLE PRECISION array, dimension (Q)
                    112: *>           The entries of the bidiagonal blocks B11, B21 are defined by
                    113: *>           THETA and PHI. See Further Details.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[out] PHI
                    117: *> \verbatim
                    118: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
                    119: *>           The entries of the bidiagonal blocks B11, B21 are defined by
                    120: *>           THETA and PHI. See Further Details.
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[out] TAUP1
                    124: *> \verbatim
1.9     ! bertrand  125: *>          TAUP1 is COMPLEX*16 array, dimension (P-1)
1.1       bertrand  126: *>           The scalar factors of the elementary reflectors that define
                    127: *>           P1.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[out] TAUP2
                    131: *> \verbatim
1.9     ! bertrand  132: *>          TAUP2 is COMPLEX*16 array, dimension (Q)
1.1       bertrand  133: *>           The scalar factors of the elementary reflectors that define
                    134: *>           P2.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[out] TAUQ1
                    138: *> \verbatim
                    139: *>          TAUQ1 is COMPLEX*16 array, dimension (Q)
                    140: *>           The scalar factors of the elementary reflectors that define
                    141: *>           Q1.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[out] WORK
                    145: *> \verbatim
                    146: *>          WORK is COMPLEX*16 array, dimension (LWORK)
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[in] LWORK
                    150: *> \verbatim
                    151: *>          LWORK is INTEGER
                    152: *>           The dimension of the array WORK. LWORK >= M-Q.
1.5       bertrand  153: *>
1.1       bertrand  154: *>           If LWORK = -1, then a workspace query is assumed; the routine
                    155: *>           only calculates the optimal size of the WORK array, returns
                    156: *>           this value as the first entry of the WORK array, and no error
                    157: *>           message related to LWORK is issued by XERBLA.
                    158: *> \endverbatim
                    159: *>
                    160: *> \param[out] INFO
                    161: *> \verbatim
                    162: *>          INFO is INTEGER
                    163: *>           = 0:  successful exit.
                    164: *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
                    165: *> \endverbatim
                    166: *
                    167: *  Authors:
                    168: *  ========
                    169: *
1.5       bertrand  170: *> \author Univ. of Tennessee
                    171: *> \author Univ. of California Berkeley
                    172: *> \author Univ. of Colorado Denver
                    173: *> \author NAG Ltd.
1.1       bertrand  174: *
                    175: *> \ingroup complex16OTHERcomputational
                    176: *
                    177: *> \par Further Details:
                    178: *  =====================
                    179: *>
                    180: *> \verbatim
                    181: *>
                    182: *>  The upper-bidiagonal blocks B11, B21 are represented implicitly by
                    183: *>  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
                    184: *>  in each bidiagonal band is a product of a sine or cosine of a THETA
                    185: *>  with a sine or cosine of a PHI. See [1] or ZUNCSD for details.
                    186: *>
                    187: *>  P1, P2, and Q1 are represented as products of elementary reflectors.
                    188: *>  See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR
                    189: *>  and ZUNGLQ.
                    190: *> \endverbatim
                    191: *
                    192: *> \par References:
                    193: *  ================
                    194: *>
                    195: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
                    196: *>      Algorithms, 50(1):33-65, 2009.
                    197: *>
                    198: *  =====================================================================
                    199:       SUBROUTINE ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
                    200:      $                    TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
                    201: *
1.9     ! bertrand  202: *  -- LAPACK computational routine --
1.1       bertrand  203: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    204: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    205: *
                    206: *     .. Scalar Arguments ..
                    207:       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
                    208: *     ..
                    209: *     .. Array Arguments ..
                    210:       DOUBLE PRECISION   PHI(*), THETA(*)
                    211:       COMPLEX*16         TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
                    212:      $                   X11(LDX11,*), X21(LDX21,*)
                    213: *     ..
                    214: *
                    215: *  ====================================================================
                    216: *
                    217: *     .. Parameters ..
                    218:       COMPLEX*16         NEGONE, ONE
                    219:       PARAMETER          ( NEGONE = (-1.0D0,0.0D0),
                    220:      $                     ONE = (1.0D0,0.0D0) )
                    221: *     ..
                    222: *     .. Local Scalars ..
                    223:       DOUBLE PRECISION   C, S
                    224:       INTEGER            CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
                    225:      $                   LWORKMIN, LWORKOPT
                    226:       LOGICAL            LQUERY
                    227: *     ..
                    228: *     .. External Subroutines ..
1.7       bertrand  229:       EXTERNAL           ZLARF, ZLARFGP, ZUNBDB5, ZDROT, ZSCAL, ZLACGV,
                    230:      $                   XERBLA
1.1       bertrand  231: *     ..
                    232: *     .. External Functions ..
                    233:       DOUBLE PRECISION   DZNRM2
                    234:       EXTERNAL           DZNRM2
                    235: *     ..
                    236: *     .. Intrinsic Function ..
                    237:       INTRINSIC          ATAN2, COS, MAX, SIN, SQRT
                    238: *     ..
                    239: *     .. Executable Statements ..
                    240: *
                    241: *     Test input arguments
                    242: *
                    243:       INFO = 0
                    244:       LQUERY = LWORK .EQ. -1
                    245: *
                    246:       IF( M .LT. 0 ) THEN
                    247:          INFO = -1
                    248:       ELSE IF( P .LT. 0 .OR. P .GT. M-P ) THEN
                    249:          INFO = -2
                    250:       ELSE IF( Q .LT. 0 .OR. Q .LT. P .OR. M-Q .LT. P ) THEN
                    251:          INFO = -3
                    252:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
                    253:          INFO = -5
                    254:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
                    255:          INFO = -7
                    256:       END IF
                    257: *
                    258: *     Compute workspace
                    259: *
                    260:       IF( INFO .EQ. 0 ) THEN
                    261:          ILARF = 2
                    262:          LLARF = MAX( P-1, M-P, Q-1 )
                    263:          IORBDB5 = 2
                    264:          LORBDB5 = Q-1
                    265:          LWORKOPT = MAX( ILARF+LLARF-1, IORBDB5+LORBDB5-1 )
                    266:          LWORKMIN = LWORKOPT
                    267:          WORK(1) = LWORKOPT
                    268:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
                    269:            INFO = -14
                    270:          END IF
                    271:       END IF
                    272:       IF( INFO .NE. 0 ) THEN
                    273:          CALL XERBLA( 'ZUNBDB2', -INFO )
                    274:          RETURN
                    275:       ELSE IF( LQUERY ) THEN
                    276:          RETURN
                    277:       END IF
                    278: *
                    279: *     Reduce rows 1, ..., P of X11 and X21
                    280: *
                    281:       DO I = 1, P
1.5       bertrand  282: *
1.1       bertrand  283:          IF( I .GT. 1 ) THEN
                    284:             CALL ZDROT( Q-I+1, X11(I,I), LDX11, X21(I-1,I), LDX21, C,
                    285:      $                  S )
                    286:          END IF
                    287:          CALL ZLACGV( Q-I+1, X11(I,I), LDX11 )
                    288:          CALL ZLARFGP( Q-I+1, X11(I,I), X11(I,I+1), LDX11, TAUQ1(I) )
                    289:          C = DBLE( X11(I,I) )
                    290:          X11(I,I) = ONE
                    291:          CALL ZLARF( 'R', P-I, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
                    292:      $               X11(I+1,I), LDX11, WORK(ILARF) )
                    293:          CALL ZLARF( 'R', M-P-I+1, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
                    294:      $               X21(I,I), LDX21, WORK(ILARF) )
                    295:          CALL ZLACGV( Q-I+1, X11(I,I), LDX11 )
1.3       bertrand  296:          S = SQRT( DZNRM2( P-I, X11(I+1,I), 1 )**2
                    297:      $           + DZNRM2( M-P-I+1, X21(I,I), 1 )**2 )
1.1       bertrand  298:          THETA(I) = ATAN2( S, C )
                    299: *
                    300:          CALL ZUNBDB5( P-I, M-P-I+1, Q-I, X11(I+1,I), 1, X21(I,I), 1,
                    301:      $                 X11(I+1,I+1), LDX11, X21(I,I+1), LDX21,
                    302:      $                 WORK(IORBDB5), LORBDB5, CHILDINFO )
                    303:          CALL ZSCAL( P-I, NEGONE, X11(I+1,I), 1 )
                    304:          CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
                    305:          IF( I .LT. P ) THEN
                    306:             CALL ZLARFGP( P-I, X11(I+1,I), X11(I+2,I), 1, TAUP1(I) )
                    307:             PHI(I) = ATAN2( DBLE( X11(I+1,I) ), DBLE( X21(I,I) ) )
                    308:             C = COS( PHI(I) )
                    309:             S = SIN( PHI(I) )
                    310:             X11(I+1,I) = ONE
                    311:             CALL ZLARF( 'L', P-I, Q-I, X11(I+1,I), 1, DCONJG(TAUP1(I)),
                    312:      $                  X11(I+1,I+1), LDX11, WORK(ILARF) )
                    313:          END IF
                    314:          X21(I,I) = ONE
                    315:          CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, DCONJG(TAUP2(I)),
                    316:      $               X21(I,I+1), LDX21, WORK(ILARF) )
                    317: *
                    318:       END DO
                    319: *
                    320: *     Reduce the bottom-right portion of X21 to the identity matrix
                    321: *
                    322:       DO I = P + 1, Q
                    323:          CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
                    324:          X21(I,I) = ONE
                    325:          CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, DCONJG(TAUP2(I)),
                    326:      $               X21(I,I+1), LDX21, WORK(ILARF) )
                    327:       END DO
                    328: *
                    329:       RETURN
                    330: *
                    331: *     End of ZUNBDB2
                    332: *
                    333:       END
                    334: 

CVSweb interface <joel.bertrand@systella.fr>