Annotation of rpl/lapack/lapack/zunbdb1.f, revision 1.9

1.1       bertrand    1: *> \brief \b ZUNBDB1
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.5       bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.1       bertrand    7: *
                      8: *> \htmlonly
                      9: *> Download ZUNBDB1 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb1.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb1.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb1.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
                     22: *                           TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
1.5       bertrand   23: *
1.1       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   PHI(*), THETA(*)
                     29: *       COMPLEX*16         TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
                     30: *      $                   X11(LDX11,*), X21(LDX21,*)
                     31: *       ..
1.5       bertrand   32: *
                     33: *
1.1       bertrand   34: *> \par Purpose:
1.7       bertrand   35: *  =============
1.1       bertrand   36: *>
                     37: *>\verbatim
                     38: *>
                     39: *> ZUNBDB1 simultaneously bidiagonalizes the blocks of a tall and skinny
                     40: *> matrix X with orthonomal columns:
                     41: *>
                     42: *>                            [ B11 ]
                     43: *>      [ X11 ]   [ P1 |    ] [  0  ]
                     44: *>      [-----] = [---------] [-----] Q1**T .
                     45: *>      [ X21 ]   [    | P2 ] [ B21 ]
                     46: *>                            [  0  ]
                     47: *>
                     48: *> X11 is P-by-Q, and X21 is (M-P)-by-Q. Q must be no larger than P,
                     49: *> M-P, or M-Q. Routines ZUNBDB2, ZUNBDB3, and ZUNBDB4 handle cases in
                     50: *> which Q is not the minimum dimension.
                     51: *>
                     52: *> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
                     53: *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
                     54: *> Householder vectors.
                     55: *>
                     56: *> B11 and B12 are Q-by-Q bidiagonal matrices represented implicitly by
                     57: *> angles THETA, PHI.
                     58: *>
                     59: *>\endverbatim
                     60: *
                     61: *  Arguments:
                     62: *  ==========
                     63: *
                     64: *> \param[in] M
                     65: *> \verbatim
                     66: *>          M is INTEGER
                     67: *>           The number of rows X11 plus the number of rows in X21.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] P
                     71: *> \verbatim
                     72: *>          P is INTEGER
                     73: *>           The number of rows in X11. 0 <= P <= M.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] Q
                     77: *> \verbatim
                     78: *>          Q is INTEGER
                     79: *>           The number of columns in X11 and X21. 0 <= Q <=
                     80: *>           MIN(P,M-P,M-Q).
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in,out] X11
                     84: *> \verbatim
                     85: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
                     86: *>           On entry, the top block of the matrix X to be reduced. On
                     87: *>           exit, the columns of tril(X11) specify reflectors for P1 and
                     88: *>           the rows of triu(X11,1) specify reflectors for Q1.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] LDX11
                     92: *> \verbatim
                     93: *>          LDX11 is INTEGER
                     94: *>           The leading dimension of X11. LDX11 >= P.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in,out] X21
                     98: *> \verbatim
                     99: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
                    100: *>           On entry, the bottom block of the matrix X to be reduced. On
                    101: *>           exit, the columns of tril(X21) specify reflectors for P2.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] LDX21
                    105: *> \verbatim
                    106: *>          LDX21 is INTEGER
                    107: *>           The leading dimension of X21. LDX21 >= M-P.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[out] THETA
                    111: *> \verbatim
                    112: *>          THETA is DOUBLE PRECISION array, dimension (Q)
                    113: *>           The entries of the bidiagonal blocks B11, B21 are defined by
                    114: *>           THETA and PHI. See Further Details.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[out] PHI
                    118: *> \verbatim
                    119: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
                    120: *>           The entries of the bidiagonal blocks B11, B21 are defined by
                    121: *>           THETA and PHI. See Further Details.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[out] TAUP1
                    125: *> \verbatim
                    126: *>          TAUP1 is COMPLEX*16 array, dimension (P)
                    127: *>           The scalar factors of the elementary reflectors that define
                    128: *>           P1.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[out] TAUP2
                    132: *> \verbatim
                    133: *>          TAUP2 is COMPLEX*16 array, dimension (M-P)
                    134: *>           The scalar factors of the elementary reflectors that define
                    135: *>           P2.
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[out] TAUQ1
                    139: *> \verbatim
                    140: *>          TAUQ1 is COMPLEX*16 array, dimension (Q)
                    141: *>           The scalar factors of the elementary reflectors that define
                    142: *>           Q1.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[out] WORK
                    146: *> \verbatim
                    147: *>          WORK is COMPLEX*16 array, dimension (LWORK)
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[in] LWORK
                    151: *> \verbatim
                    152: *>          LWORK is INTEGER
                    153: *>           The dimension of the array WORK. LWORK >= M-Q.
1.5       bertrand  154: *>
1.1       bertrand  155: *>           If LWORK = -1, then a workspace query is assumed; the routine
                    156: *>           only calculates the optimal size of the WORK array, returns
                    157: *>           this value as the first entry of the WORK array, and no error
                    158: *>           message related to LWORK is issued by XERBLA.
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[out] INFO
                    162: *> \verbatim
                    163: *>          INFO is INTEGER
                    164: *>           = 0:  successful exit.
                    165: *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
                    166: *> \endverbatim
                    167: *>
                    168: *
                    169: *  Authors:
                    170: *  ========
                    171: *
1.5       bertrand  172: *> \author Univ. of Tennessee
                    173: *> \author Univ. of California Berkeley
                    174: *> \author Univ. of Colorado Denver
                    175: *> \author NAG Ltd.
1.1       bertrand  176: *
                    177: *> \ingroup complex16OTHERcomputational
                    178: *
                    179: *> \par Further Details:
                    180: *  =====================
                    181: *>
                    182: *> \verbatim
                    183: *>
                    184: *>  The upper-bidiagonal blocks B11, B21 are represented implicitly by
                    185: *>  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
                    186: *>  in each bidiagonal band is a product of a sine or cosine of a THETA
                    187: *>  with a sine or cosine of a PHI. See [1] or ZUNCSD for details.
                    188: *>
                    189: *>  P1, P2, and Q1 are represented as products of elementary reflectors.
                    190: *>  See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR
                    191: *>  and ZUNGLQ.
                    192: *> \endverbatim
                    193: *
                    194: *> \par References:
                    195: *  ================
                    196: *>
                    197: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
                    198: *>      Algorithms, 50(1):33-65, 2009.
                    199: *>
                    200: *  =====================================================================
                    201:       SUBROUTINE ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
                    202:      $                    TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
                    203: *
1.9     ! bertrand  204: *  -- LAPACK computational routine --
1.1       bertrand  205: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    206: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    207: *
                    208: *     .. Scalar Arguments ..
                    209:       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
                    210: *     ..
                    211: *     .. Array Arguments ..
                    212:       DOUBLE PRECISION   PHI(*), THETA(*)
                    213:       COMPLEX*16         TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
                    214:      $                   X11(LDX11,*), X21(LDX21,*)
                    215: *     ..
                    216: *
                    217: *  ====================================================================
                    218: *
                    219: *     .. Parameters ..
                    220:       COMPLEX*16         ONE
                    221:       PARAMETER          ( ONE = (1.0D0,0.0D0) )
                    222: *     ..
                    223: *     .. Local Scalars ..
                    224:       DOUBLE PRECISION   C, S
                    225:       INTEGER            CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
                    226:      $                   LWORKMIN, LWORKOPT
                    227:       LOGICAL            LQUERY
                    228: *     ..
                    229: *     .. External Subroutines ..
                    230:       EXTERNAL           ZLARF, ZLARFGP, ZUNBDB5, ZDROT, XERBLA
                    231:       EXTERNAL           ZLACGV
                    232: *     ..
                    233: *     .. External Functions ..
                    234:       DOUBLE PRECISION   DZNRM2
                    235:       EXTERNAL           DZNRM2
                    236: *     ..
                    237: *     .. Intrinsic Function ..
                    238:       INTRINSIC          ATAN2, COS, MAX, SIN, SQRT
                    239: *     ..
                    240: *     .. Executable Statements ..
                    241: *
                    242: *     Test input arguments
                    243: *
                    244:       INFO = 0
                    245:       LQUERY = LWORK .EQ. -1
                    246: *
                    247:       IF( M .LT. 0 ) THEN
                    248:          INFO = -1
                    249:       ELSE IF( P .LT. Q .OR. M-P .LT. Q ) THEN
                    250:          INFO = -2
                    251:       ELSE IF( Q .LT. 0 .OR. M-Q .LT. Q ) THEN
                    252:          INFO = -3
                    253:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
                    254:          INFO = -5
                    255:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
                    256:          INFO = -7
                    257:       END IF
                    258: *
                    259: *     Compute workspace
                    260: *
                    261:       IF( INFO .EQ. 0 ) THEN
                    262:          ILARF = 2
                    263:          LLARF = MAX( P-1, M-P-1, Q-1 )
                    264:          IORBDB5 = 2
                    265:          LORBDB5 = Q-2
                    266:          LWORKOPT = MAX( ILARF+LLARF-1, IORBDB5+LORBDB5-1 )
                    267:          LWORKMIN = LWORKOPT
                    268:          WORK(1) = LWORKOPT
                    269:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
                    270:            INFO = -14
                    271:          END IF
                    272:       END IF
                    273:       IF( INFO .NE. 0 ) THEN
                    274:          CALL XERBLA( 'ZUNBDB1', -INFO )
                    275:          RETURN
                    276:       ELSE IF( LQUERY ) THEN
                    277:          RETURN
                    278:       END IF
                    279: *
                    280: *     Reduce columns 1, ..., Q of X11 and X21
                    281: *
                    282:       DO I = 1, Q
                    283: *
                    284:          CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
                    285:          CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
                    286:          THETA(I) = ATAN2( DBLE( X21(I,I) ), DBLE( X11(I,I) ) )
                    287:          C = COS( THETA(I) )
                    288:          S = SIN( THETA(I) )
                    289:          X11(I,I) = ONE
                    290:          X21(I,I) = ONE
                    291:          CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1, DCONJG(TAUP1(I)),
                    292:      $               X11(I,I+1), LDX11, WORK(ILARF) )
                    293:          CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, DCONJG(TAUP2(I)),
                    294:      $               X21(I,I+1), LDX21, WORK(ILARF) )
                    295: *
                    296:          IF( I .LT. Q ) THEN
                    297:             CALL ZDROT( Q-I, X11(I,I+1), LDX11, X21(I,I+1), LDX21, C,
                    298:      $                  S )
                    299:             CALL ZLACGV( Q-I, X21(I,I+1), LDX21 )
                    300:             CALL ZLARFGP( Q-I, X21(I,I+1), X21(I,I+2), LDX21, TAUQ1(I) )
                    301:             S = DBLE( X21(I,I+1) )
                    302:             X21(I,I+1) = ONE
                    303:             CALL ZLARF( 'R', P-I, Q-I, X21(I,I+1), LDX21, TAUQ1(I),
                    304:      $                  X11(I+1,I+1), LDX11, WORK(ILARF) )
                    305:             CALL ZLARF( 'R', M-P-I, Q-I, X21(I,I+1), LDX21, TAUQ1(I),
                    306:      $                  X21(I+1,I+1), LDX21, WORK(ILARF) )
                    307:             CALL ZLACGV( Q-I, X21(I,I+1), LDX21 )
1.5       bertrand  308:             C = SQRT( DZNRM2( P-I, X11(I+1,I+1), 1 )**2
1.3       bertrand  309:      $          + DZNRM2( M-P-I, X21(I+1,I+1), 1 )**2 )
1.1       bertrand  310:             PHI(I) = ATAN2( S, C )
                    311:             CALL ZUNBDB5( P-I, M-P-I, Q-I-1, X11(I+1,I+1), 1,
                    312:      $                    X21(I+1,I+1), 1, X11(I+1,I+2), LDX11,
                    313:      $                    X21(I+1,I+2), LDX21, WORK(IORBDB5), LORBDB5,
                    314:      $                    CHILDINFO )
                    315:          END IF
                    316: *
                    317:       END DO
                    318: *
                    319:       RETURN
                    320: *
                    321: *     End of ZUNBDB1
                    322: *
                    323:       END
                    324: 

CVSweb interface <joel.bertrand@systella.fr>