Annotation of rpl/lapack/lapack/zunbdb1.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b ZUNBDB1
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZUNBDB1 + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb1.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb1.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb1.f">
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
        !            22: *                           TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       DOUBLE PRECISION   PHI(*), THETA(*)
        !            29: *       COMPLEX*16         TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
        !            30: *      $                   X11(LDX11,*), X21(LDX21,*)
        !            31: *       ..
        !            32: *  
        !            33: * 
        !            34: *> \par Purpose:
        !            35: *> =============
        !            36: *>
        !            37: *>\verbatim
        !            38: *>
        !            39: *> ZUNBDB1 simultaneously bidiagonalizes the blocks of a tall and skinny
        !            40: *> matrix X with orthonomal columns:
        !            41: *>
        !            42: *>                            [ B11 ]
        !            43: *>      [ X11 ]   [ P1 |    ] [  0  ]
        !            44: *>      [-----] = [---------] [-----] Q1**T .
        !            45: *>      [ X21 ]   [    | P2 ] [ B21 ]
        !            46: *>                            [  0  ]
        !            47: *>
        !            48: *> X11 is P-by-Q, and X21 is (M-P)-by-Q. Q must be no larger than P,
        !            49: *> M-P, or M-Q. Routines ZUNBDB2, ZUNBDB3, and ZUNBDB4 handle cases in
        !            50: *> which Q is not the minimum dimension.
        !            51: *>
        !            52: *> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
        !            53: *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
        !            54: *> Householder vectors.
        !            55: *>
        !            56: *> B11 and B12 are Q-by-Q bidiagonal matrices represented implicitly by
        !            57: *> angles THETA, PHI.
        !            58: *>
        !            59: *>\endverbatim
        !            60: *
        !            61: *  Arguments:
        !            62: *  ==========
        !            63: *
        !            64: *> \param[in] M
        !            65: *> \verbatim
        !            66: *>          M is INTEGER
        !            67: *>           The number of rows X11 plus the number of rows in X21.
        !            68: *> \endverbatim
        !            69: *>
        !            70: *> \param[in] P
        !            71: *> \verbatim
        !            72: *>          P is INTEGER
        !            73: *>           The number of rows in X11. 0 <= P <= M.
        !            74: *> \endverbatim
        !            75: *>
        !            76: *> \param[in] Q
        !            77: *> \verbatim
        !            78: *>          Q is INTEGER
        !            79: *>           The number of columns in X11 and X21. 0 <= Q <=
        !            80: *>           MIN(P,M-P,M-Q).
        !            81: *> \endverbatim
        !            82: *>
        !            83: *> \param[in,out] X11
        !            84: *> \verbatim
        !            85: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
        !            86: *>           On entry, the top block of the matrix X to be reduced. On
        !            87: *>           exit, the columns of tril(X11) specify reflectors for P1 and
        !            88: *>           the rows of triu(X11,1) specify reflectors for Q1.
        !            89: *> \endverbatim
        !            90: *>
        !            91: *> \param[in] LDX11
        !            92: *> \verbatim
        !            93: *>          LDX11 is INTEGER
        !            94: *>           The leading dimension of X11. LDX11 >= P.
        !            95: *> \endverbatim
        !            96: *>
        !            97: *> \param[in,out] X21
        !            98: *> \verbatim
        !            99: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
        !           100: *>           On entry, the bottom block of the matrix X to be reduced. On
        !           101: *>           exit, the columns of tril(X21) specify reflectors for P2.
        !           102: *> \endverbatim
        !           103: *>
        !           104: *> \param[in] LDX21
        !           105: *> \verbatim
        !           106: *>          LDX21 is INTEGER
        !           107: *>           The leading dimension of X21. LDX21 >= M-P.
        !           108: *> \endverbatim
        !           109: *>
        !           110: *> \param[out] THETA
        !           111: *> \verbatim
        !           112: *>          THETA is DOUBLE PRECISION array, dimension (Q)
        !           113: *>           The entries of the bidiagonal blocks B11, B21 are defined by
        !           114: *>           THETA and PHI. See Further Details.
        !           115: *> \endverbatim
        !           116: *>
        !           117: *> \param[out] PHI
        !           118: *> \verbatim
        !           119: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
        !           120: *>           The entries of the bidiagonal blocks B11, B21 are defined by
        !           121: *>           THETA and PHI. See Further Details.
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[out] TAUP1
        !           125: *> \verbatim
        !           126: *>          TAUP1 is COMPLEX*16 array, dimension (P)
        !           127: *>           The scalar factors of the elementary reflectors that define
        !           128: *>           P1.
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[out] TAUP2
        !           132: *> \verbatim
        !           133: *>          TAUP2 is COMPLEX*16 array, dimension (M-P)
        !           134: *>           The scalar factors of the elementary reflectors that define
        !           135: *>           P2.
        !           136: *> \endverbatim
        !           137: *>
        !           138: *> \param[out] TAUQ1
        !           139: *> \verbatim
        !           140: *>          TAUQ1 is COMPLEX*16 array, dimension (Q)
        !           141: *>           The scalar factors of the elementary reflectors that define
        !           142: *>           Q1.
        !           143: *> \endverbatim
        !           144: *>
        !           145: *> \param[out] WORK
        !           146: *> \verbatim
        !           147: *>          WORK is COMPLEX*16 array, dimension (LWORK)
        !           148: *> \endverbatim
        !           149: *>
        !           150: *> \param[in] LWORK
        !           151: *> \verbatim
        !           152: *>          LWORK is INTEGER
        !           153: *>           The dimension of the array WORK. LWORK >= M-Q.
        !           154: *> 
        !           155: *>           If LWORK = -1, then a workspace query is assumed; the routine
        !           156: *>           only calculates the optimal size of the WORK array, returns
        !           157: *>           this value as the first entry of the WORK array, and no error
        !           158: *>           message related to LWORK is issued by XERBLA.
        !           159: *> \endverbatim
        !           160: *>
        !           161: *> \param[out] INFO
        !           162: *> \verbatim
        !           163: *>          INFO is INTEGER
        !           164: *>           = 0:  successful exit.
        !           165: *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           166: *> \endverbatim
        !           167: *>
        !           168: *
        !           169: *  Authors:
        !           170: *  ========
        !           171: *
        !           172: *> \author Univ. of Tennessee 
        !           173: *> \author Univ. of California Berkeley 
        !           174: *> \author Univ. of Colorado Denver 
        !           175: *> \author NAG Ltd. 
        !           176: *
        !           177: *> \date July 2012
        !           178: *
        !           179: *> \ingroup complex16OTHERcomputational
        !           180: *
        !           181: *> \par Further Details:
        !           182: *  =====================
        !           183: *>
        !           184: *> \verbatim
        !           185: *>
        !           186: *>  The upper-bidiagonal blocks B11, B21 are represented implicitly by
        !           187: *>  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
        !           188: *>  in each bidiagonal band is a product of a sine or cosine of a THETA
        !           189: *>  with a sine or cosine of a PHI. See [1] or ZUNCSD for details.
        !           190: *>
        !           191: *>  P1, P2, and Q1 are represented as products of elementary reflectors.
        !           192: *>  See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR
        !           193: *>  and ZUNGLQ.
        !           194: *> \endverbatim
        !           195: *
        !           196: *> \par References:
        !           197: *  ================
        !           198: *>
        !           199: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
        !           200: *>      Algorithms, 50(1):33-65, 2009.
        !           201: *>
        !           202: *  =====================================================================
        !           203:       SUBROUTINE ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
        !           204:      $                    TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
        !           205: *
        !           206: *  -- LAPACK computational routine (version 3.5.0) --
        !           207: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           208: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           209: *     July 2012
        !           210: *
        !           211: *     .. Scalar Arguments ..
        !           212:       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
        !           213: *     ..
        !           214: *     .. Array Arguments ..
        !           215:       DOUBLE PRECISION   PHI(*), THETA(*)
        !           216:       COMPLEX*16         TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
        !           217:      $                   X11(LDX11,*), X21(LDX21,*)
        !           218: *     ..
        !           219: *
        !           220: *  ====================================================================
        !           221: *
        !           222: *     .. Parameters ..
        !           223:       COMPLEX*16         ONE
        !           224:       PARAMETER          ( ONE = (1.0D0,0.0D0) )
        !           225: *     ..
        !           226: *     .. Local Scalars ..
        !           227:       DOUBLE PRECISION   C, S
        !           228:       INTEGER            CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
        !           229:      $                   LWORKMIN, LWORKOPT
        !           230:       LOGICAL            LQUERY
        !           231: *     ..
        !           232: *     .. External Subroutines ..
        !           233:       EXTERNAL           ZLARF, ZLARFGP, ZUNBDB5, ZDROT, XERBLA
        !           234:       EXTERNAL           ZLACGV
        !           235: *     ..
        !           236: *     .. External Functions ..
        !           237:       DOUBLE PRECISION   DZNRM2
        !           238:       EXTERNAL           DZNRM2
        !           239: *     ..
        !           240: *     .. Intrinsic Function ..
        !           241:       INTRINSIC          ATAN2, COS, MAX, SIN, SQRT
        !           242: *     ..
        !           243: *     .. Executable Statements ..
        !           244: *
        !           245: *     Test input arguments
        !           246: *
        !           247:       INFO = 0
        !           248:       LQUERY = LWORK .EQ. -1
        !           249: *
        !           250:       IF( M .LT. 0 ) THEN
        !           251:          INFO = -1
        !           252:       ELSE IF( P .LT. Q .OR. M-P .LT. Q ) THEN
        !           253:          INFO = -2
        !           254:       ELSE IF( Q .LT. 0 .OR. M-Q .LT. Q ) THEN
        !           255:          INFO = -3
        !           256:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
        !           257:          INFO = -5
        !           258:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
        !           259:          INFO = -7
        !           260:       END IF
        !           261: *
        !           262: *     Compute workspace
        !           263: *
        !           264:       IF( INFO .EQ. 0 ) THEN
        !           265:          ILARF = 2
        !           266:          LLARF = MAX( P-1, M-P-1, Q-1 )
        !           267:          IORBDB5 = 2
        !           268:          LORBDB5 = Q-2
        !           269:          LWORKOPT = MAX( ILARF+LLARF-1, IORBDB5+LORBDB5-1 )
        !           270:          LWORKMIN = LWORKOPT
        !           271:          WORK(1) = LWORKOPT
        !           272:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
        !           273:            INFO = -14
        !           274:          END IF
        !           275:       END IF
        !           276:       IF( INFO .NE. 0 ) THEN
        !           277:          CALL XERBLA( 'ZUNBDB1', -INFO )
        !           278:          RETURN
        !           279:       ELSE IF( LQUERY ) THEN
        !           280:          RETURN
        !           281:       END IF
        !           282: *
        !           283: *     Reduce columns 1, ..., Q of X11 and X21
        !           284: *
        !           285:       DO I = 1, Q
        !           286: *
        !           287:          CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
        !           288:          CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
        !           289:          THETA(I) = ATAN2( DBLE( X21(I,I) ), DBLE( X11(I,I) ) )
        !           290:          C = COS( THETA(I) )
        !           291:          S = SIN( THETA(I) )
        !           292:          X11(I,I) = ONE
        !           293:          X21(I,I) = ONE
        !           294:          CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1, DCONJG(TAUP1(I)),
        !           295:      $               X11(I,I+1), LDX11, WORK(ILARF) )
        !           296:          CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, DCONJG(TAUP2(I)),
        !           297:      $               X21(I,I+1), LDX21, WORK(ILARF) )
        !           298: *
        !           299:          IF( I .LT. Q ) THEN
        !           300:             CALL ZDROT( Q-I, X11(I,I+1), LDX11, X21(I,I+1), LDX21, C,
        !           301:      $                  S )
        !           302:             CALL ZLACGV( Q-I, X21(I,I+1), LDX21 )
        !           303:             CALL ZLARFGP( Q-I, X21(I,I+1), X21(I,I+2), LDX21, TAUQ1(I) )
        !           304:             S = DBLE( X21(I,I+1) )
        !           305:             X21(I,I+1) = ONE
        !           306:             CALL ZLARF( 'R', P-I, Q-I, X21(I,I+1), LDX21, TAUQ1(I),
        !           307:      $                  X11(I+1,I+1), LDX11, WORK(ILARF) )
        !           308:             CALL ZLARF( 'R', M-P-I, Q-I, X21(I,I+1), LDX21, TAUQ1(I),
        !           309:      $                  X21(I+1,I+1), LDX21, WORK(ILARF) )
        !           310:             CALL ZLACGV( Q-I, X21(I,I+1), LDX21 )
        !           311:             C = SQRT( DZNRM2( P-I, X11(I+1,I+1), 1, X11(I+1,I+1),
        !           312:      $          1 )**2 + DZNRM2( M-P-I, X21(I+1,I+1), 1, X21(I+1,I+1),
        !           313:      $          1 )**2 )
        !           314:             PHI(I) = ATAN2( S, C )
        !           315:             CALL ZUNBDB5( P-I, M-P-I, Q-I-1, X11(I+1,I+1), 1,
        !           316:      $                    X21(I+1,I+1), 1, X11(I+1,I+2), LDX11,
        !           317:      $                    X21(I+1,I+2), LDX21, WORK(IORBDB5), LORBDB5,
        !           318:      $                    CHILDINFO )
        !           319:          END IF
        !           320: *
        !           321:       END DO
        !           322: *
        !           323:       RETURN
        !           324: *
        !           325: *     End of ZUNBDB1
        !           326: *
        !           327:       END
        !           328: 

CVSweb interface <joel.bertrand@systella.fr>