File:  [local] / rpl / lapack / lapack / zunbdb.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:43 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZUNBDB
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZUNBDB + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
   22: *                          X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
   23: *                          TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          SIGNS, TRANS
   27: *       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
   28: *      $                   Q
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   PHI( * ), THETA( * )
   32: *       COMPLEX*16         TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
   33: *      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
   34: *      $                   X21( LDX21, * ), X22( LDX22, * )
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZUNBDB simultaneously bidiagonalizes the blocks of an M-by-M
   44: *> partitioned unitary matrix X:
   45: *>
   46: *>                                 [ B11 | B12 0  0 ]
   47: *>     [ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**H
   48: *> X = [-----------] = [---------] [----------------] [---------]   .
   49: *>     [ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
   50: *>                                 [  0  |  0  0  I ]
   51: *>
   52: *> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
   53: *> not the case, then X must be transposed and/or permuted. This can be
   54: *> done in constant time using the TRANS and SIGNS options. See ZUNCSD
   55: *> for details.)
   56: *>
   57: *> The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
   58: *> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
   59: *> represented implicitly by Householder vectors.
   60: *>
   61: *> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
   62: *> implicitly by angles THETA, PHI.
   63: *> \endverbatim
   64: *
   65: *  Arguments:
   66: *  ==========
   67: *
   68: *> \param[in] TRANS
   69: *> \verbatim
   70: *>          TRANS is CHARACTER
   71: *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
   72: *>                      order;
   73: *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
   74: *>                      major order.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] SIGNS
   78: *> \verbatim
   79: *>          SIGNS is CHARACTER
   80: *>          = 'O':      The lower-left block is made nonpositive (the
   81: *>                      "other" convention);
   82: *>          otherwise:  The upper-right block is made nonpositive (the
   83: *>                      "default" convention).
   84: *> \endverbatim
   85: *>
   86: *> \param[in] M
   87: *> \verbatim
   88: *>          M is INTEGER
   89: *>          The number of rows and columns in X.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] P
   93: *> \verbatim
   94: *>          P is INTEGER
   95: *>          The number of rows in X11 and X12. 0 <= P <= M.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] Q
   99: *> \verbatim
  100: *>          Q is INTEGER
  101: *>          The number of columns in X11 and X21. 0 <= Q <=
  102: *>          MIN(P,M-P,M-Q).
  103: *> \endverbatim
  104: *>
  105: *> \param[in,out] X11
  106: *> \verbatim
  107: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
  108: *>          On entry, the top-left block of the unitary matrix to be
  109: *>          reduced. On exit, the form depends on TRANS:
  110: *>          If TRANS = 'N', then
  111: *>             the columns of tril(X11) specify reflectors for P1,
  112: *>             the rows of triu(X11,1) specify reflectors for Q1;
  113: *>          else TRANS = 'T', and
  114: *>             the rows of triu(X11) specify reflectors for P1,
  115: *>             the columns of tril(X11,-1) specify reflectors for Q1.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] LDX11
  119: *> \verbatim
  120: *>          LDX11 is INTEGER
  121: *>          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
  122: *>          P; else LDX11 >= Q.
  123: *> \endverbatim
  124: *>
  125: *> \param[in,out] X12
  126: *> \verbatim
  127: *>          X12 is COMPLEX*16 array, dimension (LDX12,M-Q)
  128: *>          On entry, the top-right block of the unitary matrix to
  129: *>          be reduced. On exit, the form depends on TRANS:
  130: *>          If TRANS = 'N', then
  131: *>             the rows of triu(X12) specify the first P reflectors for
  132: *>             Q2;
  133: *>          else TRANS = 'T', and
  134: *>             the columns of tril(X12) specify the first P reflectors
  135: *>             for Q2.
  136: *> \endverbatim
  137: *>
  138: *> \param[in] LDX12
  139: *> \verbatim
  140: *>          LDX12 is INTEGER
  141: *>          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
  142: *>          P; else LDX11 >= M-Q.
  143: *> \endverbatim
  144: *>
  145: *> \param[in,out] X21
  146: *> \verbatim
  147: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
  148: *>          On entry, the bottom-left block of the unitary matrix to
  149: *>          be reduced. On exit, the form depends on TRANS:
  150: *>          If TRANS = 'N', then
  151: *>             the columns of tril(X21) specify reflectors for P2;
  152: *>          else TRANS = 'T', and
  153: *>             the rows of triu(X21) specify reflectors for P2.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] LDX21
  157: *> \verbatim
  158: *>          LDX21 is INTEGER
  159: *>          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
  160: *>          M-P; else LDX21 >= Q.
  161: *> \endverbatim
  162: *>
  163: *> \param[in,out] X22
  164: *> \verbatim
  165: *>          X22 is COMPLEX*16 array, dimension (LDX22,M-Q)
  166: *>          On entry, the bottom-right block of the unitary matrix to
  167: *>          be reduced. On exit, the form depends on TRANS:
  168: *>          If TRANS = 'N', then
  169: *>             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
  170: *>             M-P-Q reflectors for Q2,
  171: *>          else TRANS = 'T', and
  172: *>             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
  173: *>             M-P-Q reflectors for P2.
  174: *> \endverbatim
  175: *>
  176: *> \param[in] LDX22
  177: *> \verbatim
  178: *>          LDX22 is INTEGER
  179: *>          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
  180: *>          M-P; else LDX22 >= M-Q.
  181: *> \endverbatim
  182: *>
  183: *> \param[out] THETA
  184: *> \verbatim
  185: *>          THETA is DOUBLE PRECISION array, dimension (Q)
  186: *>          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  187: *>          be computed from the angles THETA and PHI. See Further
  188: *>          Details.
  189: *> \endverbatim
  190: *>
  191: *> \param[out] PHI
  192: *> \verbatim
  193: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
  194: *>          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  195: *>          be computed from the angles THETA and PHI. See Further
  196: *>          Details.
  197: *> \endverbatim
  198: *>
  199: *> \param[out] TAUP1
  200: *> \verbatim
  201: *>          TAUP1 is COMPLEX*16 array, dimension (P)
  202: *>          The scalar factors of the elementary reflectors that define
  203: *>          P1.
  204: *> \endverbatim
  205: *>
  206: *> \param[out] TAUP2
  207: *> \verbatim
  208: *>          TAUP2 is COMPLEX*16 array, dimension (M-P)
  209: *>          The scalar factors of the elementary reflectors that define
  210: *>          P2.
  211: *> \endverbatim
  212: *>
  213: *> \param[out] TAUQ1
  214: *> \verbatim
  215: *>          TAUQ1 is COMPLEX*16 array, dimension (Q)
  216: *>          The scalar factors of the elementary reflectors that define
  217: *>          Q1.
  218: *> \endverbatim
  219: *>
  220: *> \param[out] TAUQ2
  221: *> \verbatim
  222: *>          TAUQ2 is COMPLEX*16 array, dimension (M-Q)
  223: *>          The scalar factors of the elementary reflectors that define
  224: *>          Q2.
  225: *> \endverbatim
  226: *>
  227: *> \param[out] WORK
  228: *> \verbatim
  229: *>          WORK is COMPLEX*16 array, dimension (LWORK)
  230: *> \endverbatim
  231: *>
  232: *> \param[in] LWORK
  233: *> \verbatim
  234: *>          LWORK is INTEGER
  235: *>          The dimension of the array WORK. LWORK >= M-Q.
  236: *>
  237: *>          If LWORK = -1, then a workspace query is assumed; the routine
  238: *>          only calculates the optimal size of the WORK array, returns
  239: *>          this value as the first entry of the WORK array, and no error
  240: *>          message related to LWORK is issued by XERBLA.
  241: *> \endverbatim
  242: *>
  243: *> \param[out] INFO
  244: *> \verbatim
  245: *>          INFO is INTEGER
  246: *>          = 0:  successful exit.
  247: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  248: *> \endverbatim
  249: *
  250: *  Authors:
  251: *  ========
  252: *
  253: *> \author Univ. of Tennessee
  254: *> \author Univ. of California Berkeley
  255: *> \author Univ. of Colorado Denver
  256: *> \author NAG Ltd.
  257: *
  258: *> \ingroup complex16OTHERcomputational
  259: *
  260: *> \par Further Details:
  261: *  =====================
  262: *>
  263: *> \verbatim
  264: *>
  265: *>  The bidiagonal blocks B11, B12, B21, and B22 are represented
  266: *>  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
  267: *>  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
  268: *>  lower bidiagonal. Every entry in each bidiagonal band is a product
  269: *>  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
  270: *>  [1] or ZUNCSD for details.
  271: *>
  272: *>  P1, P2, Q1, and Q2 are represented as products of elementary
  273: *>  reflectors. See ZUNCSD for details on generating P1, P2, Q1, and Q2
  274: *>  using ZUNGQR and ZUNGLQ.
  275: *> \endverbatim
  276: *
  277: *> \par References:
  278: *  ================
  279: *>
  280: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  281: *>      Algorithms, 50(1):33-65, 2009.
  282: *>
  283: *  =====================================================================
  284:       SUBROUTINE ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
  285:      $                   X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
  286:      $                   TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
  287: *
  288: *  -- LAPACK computational routine --
  289: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  290: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  291: *
  292: *     .. Scalar Arguments ..
  293:       CHARACTER          SIGNS, TRANS
  294:       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
  295:      $                   Q
  296: *     ..
  297: *     .. Array Arguments ..
  298:       DOUBLE PRECISION   PHI( * ), THETA( * )
  299:       COMPLEX*16         TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
  300:      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
  301:      $                   X21( LDX21, * ), X22( LDX22, * )
  302: *     ..
  303: *
  304: *  ====================================================================
  305: *
  306: *     .. Parameters ..
  307:       DOUBLE PRECISION   REALONE
  308:       PARAMETER          ( REALONE = 1.0D0 )
  309:       COMPLEX*16         ONE
  310:       PARAMETER          ( ONE = (1.0D0,0.0D0) )
  311: *     ..
  312: *     .. Local Scalars ..
  313:       LOGICAL            COLMAJOR, LQUERY
  314:       INTEGER            I, LWORKMIN, LWORKOPT
  315:       DOUBLE PRECISION   Z1, Z2, Z3, Z4
  316: *     ..
  317: *     .. External Subroutines ..
  318:       EXTERNAL           ZAXPY, ZLARF, ZLARFGP, ZSCAL, XERBLA
  319:       EXTERNAL           ZLACGV
  320: *
  321: *     ..
  322: *     .. External Functions ..
  323:       DOUBLE PRECISION   DZNRM2
  324:       LOGICAL            LSAME
  325:       EXTERNAL           DZNRM2, LSAME
  326: *     ..
  327: *     .. Intrinsic Functions
  328:       INTRINSIC          ATAN2, COS, MAX, MIN, SIN
  329:       INTRINSIC          DCMPLX, DCONJG
  330: *     ..
  331: *     .. Executable Statements ..
  332: *
  333: *     Test input arguments
  334: *
  335:       INFO = 0
  336:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  337:       IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN
  338:          Z1 = REALONE
  339:          Z2 = REALONE
  340:          Z3 = REALONE
  341:          Z4 = REALONE
  342:       ELSE
  343:          Z1 = REALONE
  344:          Z2 = -REALONE
  345:          Z3 = REALONE
  346:          Z4 = -REALONE
  347:       END IF
  348:       LQUERY = LWORK .EQ. -1
  349: *
  350:       IF( M .LT. 0 ) THEN
  351:          INFO = -3
  352:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  353:          INFO = -4
  354:       ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR.
  355:      $         Q .GT. M-Q ) THEN
  356:          INFO = -5
  357:       ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
  358:          INFO = -7
  359:       ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
  360:          INFO = -7
  361:       ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
  362:          INFO = -9
  363:       ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
  364:          INFO = -9
  365:       ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
  366:          INFO = -11
  367:       ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
  368:          INFO = -11
  369:       ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
  370:          INFO = -13
  371:       ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
  372:          INFO = -13
  373:       END IF
  374: *
  375: *     Compute workspace
  376: *
  377:       IF( INFO .EQ. 0 ) THEN
  378:          LWORKOPT = M - Q
  379:          LWORKMIN = M - Q
  380:          WORK(1) = LWORKOPT
  381:          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
  382:             INFO = -21
  383:          END IF
  384:       END IF
  385:       IF( INFO .NE. 0 ) THEN
  386:          CALL XERBLA( 'xORBDB', -INFO )
  387:          RETURN
  388:       ELSE IF( LQUERY ) THEN
  389:          RETURN
  390:       END IF
  391: *
  392: *     Handle column-major and row-major separately
  393: *
  394:       IF( COLMAJOR ) THEN
  395: *
  396: *        Reduce columns 1, ..., Q of X11, X12, X21, and X22
  397: *
  398:          DO I = 1, Q
  399: *
  400:             IF( I .EQ. 1 ) THEN
  401:                CALL ZSCAL( P-I+1, DCMPLX( Z1, 0.0D0 ), X11(I,I), 1 )
  402:             ELSE
  403:                CALL ZSCAL( P-I+1, DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
  404:      $                     X11(I,I), 1 )
  405:                CALL ZAXPY( P-I+1, DCMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
  406:      $                     0.0D0 ), X12(I,I-1), 1, X11(I,I), 1 )
  407:             END IF
  408:             IF( I .EQ. 1 ) THEN
  409:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2, 0.0D0 ), X21(I,I), 1 )
  410:             ELSE
  411:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
  412:      $                     X21(I,I), 1 )
  413:                CALL ZAXPY( M-P-I+1, DCMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
  414:      $                     0.0D0 ), X22(I,I-1), 1, X21(I,I), 1 )
  415:             END IF
  416: *
  417:             THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), 1 ),
  418:      $                 DZNRM2( P-I+1, X11(I,I), 1 ) )
  419: *
  420:             IF( P .GT. I ) THEN
  421:                CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
  422:             ELSE IF ( P .EQ. I ) THEN
  423:                CALL ZLARFGP( P-I+1, X11(I,I), X11(I,I), 1, TAUP1(I) )
  424:             END IF
  425:             X11(I,I) = ONE
  426:             IF ( M-P .GT. I ) THEN
  427:                CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1,
  428:      $                       TAUP2(I) )
  429:             ELSE IF ( M-P .EQ. I ) THEN
  430:                CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I,I), 1,
  431:      $                       TAUP2(I) )
  432:             END IF
  433:             X21(I,I) = ONE
  434: *
  435:             IF ( Q .GT. I ) THEN
  436:                CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1,
  437:      $                     DCONJG(TAUP1(I)), X11(I,I+1), LDX11, WORK )
  438:                CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1,
  439:      $                     DCONJG(TAUP2(I)), X21(I,I+1), LDX21, WORK )
  440:             END IF
  441:             IF ( M-Q+1 .GT. I ) THEN
  442:                CALL ZLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1,
  443:      $                     DCONJG(TAUP1(I)), X12(I,I), LDX12, WORK )
  444:                CALL ZLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1,
  445:      $                     DCONJG(TAUP2(I)), X22(I,I), LDX22, WORK )
  446:             END IF
  447: *
  448:             IF( I .LT. Q ) THEN
  449:                CALL ZSCAL( Q-I, DCMPLX( -Z1*Z3*SIN(THETA(I)), 0.0D0 ),
  450:      $                     X11(I,I+1), LDX11 )
  451:                CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
  452:      $                     X21(I,I+1), LDX21, X11(I,I+1), LDX11 )
  453:             END IF
  454:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4*SIN(THETA(I)), 0.0D0 ),
  455:      $                  X12(I,I), LDX12 )
  456:             CALL ZAXPY( M-Q-I+1, DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
  457:      $                  X22(I,I), LDX22, X12(I,I), LDX12 )
  458: *
  459:             IF( I .LT. Q )
  460:      $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I,I+1), LDX11 ),
  461:      $                  DZNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
  462: *
  463:             IF( I .LT. Q ) THEN
  464:                CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
  465:                IF ( I .EQ. Q-1 ) THEN
  466:                   CALL ZLARFGP( Q-I, X11(I,I+1), X11(I,I+1), LDX11,
  467:      $                          TAUQ1(I) )
  468:                ELSE
  469:                   CALL ZLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
  470:      $                          TAUQ1(I) )
  471:                END IF
  472:                X11(I,I+1) = ONE
  473:             END IF
  474:             IF ( M-Q+1 .GT. I ) THEN
  475:                CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  476:                IF ( M-Q .EQ. I ) THEN
  477:                   CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I), LDX12,
  478:      $                          TAUQ2(I) )
  479:                ELSE
  480:                   CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  481:      $                          TAUQ2(I) )
  482:                END IF
  483:             END IF
  484:             X12(I,I) = ONE
  485: *
  486:             IF( I .LT. Q ) THEN
  487:                CALL ZLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  488:      $                     X11(I+1,I+1), LDX11, WORK )
  489:                CALL ZLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  490:      $                     X21(I+1,I+1), LDX21, WORK )
  491:             END IF
  492:             IF ( P .GT. I ) THEN
  493:                CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  494:      $                     X12(I+1,I), LDX12, WORK )
  495:             END IF
  496:             IF ( M-P .GT. I ) THEN
  497:                CALL ZLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12,
  498:      $                     TAUQ2(I), X22(I+1,I), LDX22, WORK )
  499:             END IF
  500: *
  501:             IF( I .LT. Q )
  502:      $         CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
  503:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  504: *
  505:          END DO
  506: *
  507: *        Reduce columns Q + 1, ..., P of X12, X22
  508: *
  509:          DO I = Q + 1, P
  510: *
  511:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4, 0.0D0 ), X12(I,I),
  512:      $                  LDX12 )
  513:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  514:             IF ( I .GE. M-Q ) THEN
  515:                CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I), LDX12,
  516:      $                       TAUQ2(I) )
  517:             ELSE
  518:                CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  519:      $                       TAUQ2(I) )
  520:             END IF
  521:             X12(I,I) = ONE
  522: *
  523:             IF ( P .GT. I ) THEN
  524:                CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  525:      $                     X12(I+1,I), LDX12, WORK )
  526:             END IF
  527:             IF( M-P-Q .GE. 1 )
  528:      $         CALL ZLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
  529:      $                     TAUQ2(I), X22(Q+1,I), LDX22, WORK )
  530: *
  531:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  532: *
  533:          END DO
  534: *
  535: *        Reduce columns P + 1, ..., M - Q of X12, X22
  536: *
  537:          DO I = 1, M - P - Q
  538: *
  539:             CALL ZSCAL( M-P-Q-I+1, DCMPLX( Z2*Z4, 0.0D0 ),
  540:      $                  X22(Q+I,P+I), LDX22 )
  541:             CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
  542:             CALL ZLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
  543:      $                    LDX22, TAUQ2(P+I) )
  544:             X22(Q+I,P+I) = ONE
  545:             CALL ZLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
  546:      $                  TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
  547: *
  548:             CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
  549: *
  550:          END DO
  551: *
  552:       ELSE
  553: *
  554: *        Reduce columns 1, ..., Q of X11, X12, X21, X22
  555: *
  556:          DO I = 1, Q
  557: *
  558:             IF( I .EQ. 1 ) THEN
  559:                CALL ZSCAL( P-I+1, DCMPLX( Z1, 0.0D0 ), X11(I,I),
  560:      $                     LDX11 )
  561:             ELSE
  562:                CALL ZSCAL( P-I+1, DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
  563:      $                     X11(I,I), LDX11 )
  564:                CALL ZAXPY( P-I+1, DCMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
  565:      $                     0.0D0 ), X12(I-1,I), LDX12, X11(I,I), LDX11 )
  566:             END IF
  567:             IF( I .EQ. 1 ) THEN
  568:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2, 0.0D0 ), X21(I,I),
  569:      $                     LDX21 )
  570:             ELSE
  571:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
  572:      $                     X21(I,I), LDX21 )
  573:                CALL ZAXPY( M-P-I+1, DCMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
  574:      $                     0.0D0 ), X22(I-1,I), LDX22, X21(I,I), LDX21 )
  575:             END IF
  576: *
  577:             THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), LDX21 ),
  578:      $                 DZNRM2( P-I+1, X11(I,I), LDX11 ) )
  579: *
  580:             CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
  581:             CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
  582: *
  583:             CALL ZLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
  584:             X11(I,I) = ONE
  585:             IF ( I .EQ. M-P ) THEN
  586:                CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I,I), LDX21,
  587:      $                       TAUP2(I) )
  588:             ELSE
  589:                CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
  590:      $                       TAUP2(I) )
  591:             END IF
  592:             X21(I,I) = ONE
  593: *
  594:             CALL ZLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
  595:      $                  X11(I+1,I), LDX11, WORK )
  596:             CALL ZLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I),
  597:      $                  X12(I,I), LDX12, WORK )
  598:             CALL ZLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
  599:      $                  X21(I+1,I), LDX21, WORK )
  600:             CALL ZLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
  601:      $                  TAUP2(I), X22(I,I), LDX22, WORK )
  602: *
  603:             CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
  604:             CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
  605: *
  606:             IF( I .LT. Q ) THEN
  607:                CALL ZSCAL( Q-I, DCMPLX( -Z1*Z3*SIN(THETA(I)), 0.0D0 ),
  608:      $                     X11(I+1,I), 1 )
  609:                CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
  610:      $                     X21(I+1,I), 1, X11(I+1,I), 1 )
  611:             END IF
  612:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4*SIN(THETA(I)), 0.0D0 ),
  613:      $                  X12(I,I), 1 )
  614:             CALL ZAXPY( M-Q-I+1, DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
  615:      $                  X22(I,I), 1, X12(I,I), 1 )
  616: *
  617:             IF( I .LT. Q )
  618:      $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I+1,I), 1 ),
  619:      $                  DZNRM2( M-Q-I+1, X12(I,I), 1 ) )
  620: *
  621:             IF( I .LT. Q ) THEN
  622:                CALL ZLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) )
  623:                X11(I+1,I) = ONE
  624:             END IF
  625:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  626:             X12(I,I) = ONE
  627: *
  628:             IF( I .LT. Q ) THEN
  629:                CALL ZLARF( 'L', Q-I, P-I, X11(I+1,I), 1,
  630:      $                     DCONJG(TAUQ1(I)), X11(I+1,I+1), LDX11, WORK )
  631:                CALL ZLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1,
  632:      $                     DCONJG(TAUQ1(I)), X21(I+1,I+1), LDX21, WORK )
  633:             END IF
  634:             CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
  635:      $                  DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
  636:             IF ( M-P .GT. I ) THEN
  637:                CALL ZLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1,
  638:      $                     DCONJG(TAUQ2(I)), X22(I,I+1), LDX22, WORK )
  639:             END IF
  640: *
  641:          END DO
  642: *
  643: *        Reduce columns Q + 1, ..., P of X12, X22
  644: *
  645:          DO I = Q + 1, P
  646: *
  647:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4, 0.0D0 ), X12(I,I), 1 )
  648:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  649:             X12(I,I) = ONE
  650: *
  651:             IF ( P .GT. I ) THEN
  652:                CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
  653:      $                     DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
  654:             END IF
  655:             IF( M-P-Q .GE. 1 )
  656:      $         CALL ZLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1,
  657:      $                     DCONJG(TAUQ2(I)), X22(I,Q+1), LDX22, WORK )
  658: *
  659:          END DO
  660: *
  661: *        Reduce columns P + 1, ..., M - Q of X12, X22
  662: *
  663:          DO I = 1, M - P - Q
  664: *
  665:             CALL ZSCAL( M-P-Q-I+1, DCMPLX( Z2*Z4, 0.0D0 ),
  666:      $                  X22(P+I,Q+I), 1 )
  667:             CALL ZLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
  668:      $                    TAUQ2(P+I) )
  669:             X22(P+I,Q+I) = ONE
  670: *
  671:             IF ( M-P-Q .NE. I ) THEN
  672:                CALL ZLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
  673:      $                     DCONJG(TAUQ2(P+I)), X22(P+I,Q+I+1), LDX22,
  674:      $                     WORK )
  675:             END IF
  676: *
  677:          END DO
  678: *
  679:       END IF
  680: *
  681:       RETURN
  682: *
  683: *     End of ZUNBDB
  684: *
  685:       END
  686: 

CVSweb interface <joel.bertrand@systella.fr>