File:  [local] / rpl / lapack / lapack / zunbdb.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:42 2012 UTC (11 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b ZUNBDB
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZUNBDB + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
   22: *                          X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
   23: *                          TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          SIGNS, TRANS
   27: *       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
   28: *      $                   Q
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   PHI( * ), THETA( * )
   32: *       COMPLEX*16         TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
   33: *      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
   34: *      $                   X21( LDX21, * ), X22( LDX22, * )
   35: *       ..
   36: *  
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZUNBDB simultaneously bidiagonalizes the blocks of an M-by-M
   44: *> partitioned unitary matrix X:
   45: *>
   46: *>                                 [ B11 | B12 0  0 ]
   47: *>     [ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**H
   48: *> X = [-----------] = [---------] [----------------] [---------]   .
   49: *>     [ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
   50: *>                                 [  0  |  0  0  I ]
   51: *>
   52: *> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
   53: *> not the case, then X must be transposed and/or permuted. This can be
   54: *> done in constant time using the TRANS and SIGNS options. See ZUNCSD
   55: *> for details.)
   56: *>
   57: *> The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
   58: *> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
   59: *> represented implicitly by Householder vectors.
   60: *>
   61: *> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
   62: *> implicitly by angles THETA, PHI.
   63: *> \endverbatim
   64: *
   65: *  Arguments:
   66: *  ==========
   67: *
   68: *> \param[in] TRANS
   69: *> \verbatim
   70: *>          TRANS is CHARACTER
   71: *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
   72: *>                      order;
   73: *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
   74: *>                      major order.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] SIGNS
   78: *> \verbatim
   79: *>          SIGNS is CHARACTER
   80: *>          = 'O':      The lower-left block is made nonpositive (the
   81: *>                      "other" convention);
   82: *>          otherwise:  The upper-right block is made nonpositive (the
   83: *>                      "default" convention).
   84: *> \endverbatim
   85: *>
   86: *> \param[in] M
   87: *> \verbatim
   88: *>          M is INTEGER
   89: *>          The number of rows and columns in X.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] P
   93: *> \verbatim
   94: *>          P is INTEGER
   95: *>          The number of rows in X11 and X12. 0 <= P <= M.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] Q
   99: *> \verbatim
  100: *>          Q is INTEGER
  101: *>          The number of columns in X11 and X21. 0 <= Q <=
  102: *>          MIN(P,M-P,M-Q).
  103: *> \endverbatim
  104: *>
  105: *> \param[in,out] X11
  106: *> \verbatim
  107: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
  108: *>          On entry, the top-left block of the unitary matrix to be
  109: *>          reduced. On exit, the form depends on TRANS:
  110: *>          If TRANS = 'N', then
  111: *>             the columns of tril(X11) specify reflectors for P1,
  112: *>             the rows of triu(X11,1) specify reflectors for Q1;
  113: *>          else TRANS = 'T', and
  114: *>             the rows of triu(X11) specify reflectors for P1,
  115: *>             the columns of tril(X11,-1) specify reflectors for Q1.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] LDX11
  119: *> \verbatim
  120: *>          LDX11 is INTEGER
  121: *>          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
  122: *>          P; else LDX11 >= Q.
  123: *> \endverbatim
  124: *>
  125: *> \param[in,out] X12
  126: *> \verbatim
  127: *>          X12 is COMPLEX*16 array, dimension (LDX12,M-Q)
  128: *>          On entry, the top-right block of the unitary matrix to
  129: *>          be reduced. On exit, the form depends on TRANS:
  130: *>          If TRANS = 'N', then
  131: *>             the rows of triu(X12) specify the first P reflectors for
  132: *>             Q2;
  133: *>          else TRANS = 'T', and
  134: *>             the columns of tril(X12) specify the first P reflectors
  135: *>             for Q2.
  136: *> \endverbatim
  137: *>
  138: *> \param[in] LDX12
  139: *> \verbatim
  140: *>          LDX12 is INTEGER
  141: *>          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
  142: *>          P; else LDX11 >= M-Q.
  143: *> \endverbatim
  144: *>
  145: *> \param[in,out] X21
  146: *> \verbatim
  147: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
  148: *>          On entry, the bottom-left block of the unitary matrix to
  149: *>          be reduced. On exit, the form depends on TRANS:
  150: *>          If TRANS = 'N', then
  151: *>             the columns of tril(X21) specify reflectors for P2;
  152: *>          else TRANS = 'T', and
  153: *>             the rows of triu(X21) specify reflectors for P2.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] LDX21
  157: *> \verbatim
  158: *>          LDX21 is INTEGER
  159: *>          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
  160: *>          M-P; else LDX21 >= Q.
  161: *> \endverbatim
  162: *>
  163: *> \param[in,out] X22
  164: *> \verbatim
  165: *>          X22 is COMPLEX*16 array, dimension (LDX22,M-Q)
  166: *>          On entry, the bottom-right block of the unitary matrix to
  167: *>          be reduced. On exit, the form depends on TRANS:
  168: *>          If TRANS = 'N', then
  169: *>             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
  170: *>             M-P-Q reflectors for Q2,
  171: *>          else TRANS = 'T', and
  172: *>             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
  173: *>             M-P-Q reflectors for P2.
  174: *> \endverbatim
  175: *>
  176: *> \param[in] LDX22
  177: *> \verbatim
  178: *>          LDX22 is INTEGER
  179: *>          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
  180: *>          M-P; else LDX22 >= M-Q.
  181: *> \endverbatim
  182: *>
  183: *> \param[out] THETA
  184: *> \verbatim
  185: *>          THETA is DOUBLE PRECISION array, dimension (Q)
  186: *>          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  187: *>          be computed from the angles THETA and PHI. See Further
  188: *>          Details.
  189: *> \endverbatim
  190: *>
  191: *> \param[out] PHI
  192: *> \verbatim
  193: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
  194: *>          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  195: *>          be computed from the angles THETA and PHI. See Further
  196: *>          Details.
  197: *> \endverbatim
  198: *>
  199: *> \param[out] TAUP1
  200: *> \verbatim
  201: *>          TAUP1 is COMPLEX*16 array, dimension (P)
  202: *>          The scalar factors of the elementary reflectors that define
  203: *>          P1.
  204: *> \endverbatim
  205: *>
  206: *> \param[out] TAUP2
  207: *> \verbatim
  208: *>          TAUP2 is COMPLEX*16 array, dimension (M-P)
  209: *>          The scalar factors of the elementary reflectors that define
  210: *>          P2.
  211: *> \endverbatim
  212: *>
  213: *> \param[out] TAUQ1
  214: *> \verbatim
  215: *>          TAUQ1 is COMPLEX*16 array, dimension (Q)
  216: *>          The scalar factors of the elementary reflectors that define
  217: *>          Q1.
  218: *> \endverbatim
  219: *>
  220: *> \param[out] TAUQ2
  221: *> \verbatim
  222: *>          TAUQ2 is COMPLEX*16 array, dimension (M-Q)
  223: *>          The scalar factors of the elementary reflectors that define
  224: *>          Q2.
  225: *> \endverbatim
  226: *>
  227: *> \param[out] WORK
  228: *> \verbatim
  229: *>          WORK is COMPLEX*16 array, dimension (LWORK)
  230: *> \endverbatim
  231: *>
  232: *> \param[in] LWORK
  233: *> \verbatim
  234: *>          LWORK is INTEGER
  235: *>          The dimension of the array WORK. LWORK >= M-Q.
  236: *>
  237: *>          If LWORK = -1, then a workspace query is assumed; the routine
  238: *>          only calculates the optimal size of the WORK array, returns
  239: *>          this value as the first entry of the WORK array, and no error
  240: *>          message related to LWORK is issued by XERBLA.
  241: *> \endverbatim
  242: *>
  243: *> \param[out] INFO
  244: *> \verbatim
  245: *>          INFO is INTEGER
  246: *>          = 0:  successful exit.
  247: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  248: *> \endverbatim
  249: *
  250: *  Authors:
  251: *  ========
  252: *
  253: *> \author Univ. of Tennessee 
  254: *> \author Univ. of California Berkeley 
  255: *> \author Univ. of Colorado Denver 
  256: *> \author NAG Ltd. 
  257: *
  258: *> \date November 2011
  259: *
  260: *> \ingroup complex16OTHERcomputational
  261: *
  262: *> \par Further Details:
  263: *  =====================
  264: *>
  265: *> \verbatim
  266: *>
  267: *>  The bidiagonal blocks B11, B12, B21, and B22 are represented
  268: *>  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
  269: *>  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
  270: *>  lower bidiagonal. Every entry in each bidiagonal band is a product
  271: *>  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
  272: *>  [1] or ZUNCSD for details.
  273: *>
  274: *>  P1, P2, Q1, and Q2 are represented as products of elementary
  275: *>  reflectors. See ZUNCSD for details on generating P1, P2, Q1, and Q2
  276: *>  using ZUNGQR and ZUNGLQ.
  277: *> \endverbatim
  278: *
  279: *> \par References:
  280: *  ================
  281: *>
  282: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  283: *>      Algorithms, 50(1):33-65, 2009.
  284: *>
  285: *  =====================================================================
  286:       SUBROUTINE ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
  287:      $                   X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
  288:      $                   TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
  289: *
  290: *  -- LAPACK computational routine (version 3.4.0) --
  291: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  292: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  293: *     November 2011
  294: *
  295: *     .. Scalar Arguments ..
  296:       CHARACTER          SIGNS, TRANS
  297:       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
  298:      $                   Q
  299: *     ..
  300: *     .. Array Arguments ..
  301:       DOUBLE PRECISION   PHI( * ), THETA( * )
  302:       COMPLEX*16         TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
  303:      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
  304:      $                   X21( LDX21, * ), X22( LDX22, * )
  305: *     ..
  306: *
  307: *  ====================================================================
  308: *
  309: *     .. Parameters ..
  310:       DOUBLE PRECISION   REALONE
  311:       PARAMETER          ( REALONE = 1.0D0 )
  312:       COMPLEX*16         ONE
  313:       PARAMETER          ( ONE = (1.0D0,0.0D0) )
  314: *     ..
  315: *     .. Local Scalars ..
  316:       LOGICAL            COLMAJOR, LQUERY
  317:       INTEGER            I, LWORKMIN, LWORKOPT
  318:       DOUBLE PRECISION   Z1, Z2, Z3, Z4
  319: *     ..
  320: *     .. External Subroutines ..
  321:       EXTERNAL           ZAXPY, ZLARF, ZLARFGP, ZSCAL, XERBLA
  322:       EXTERNAL           ZLACGV
  323: *
  324: *     ..
  325: *     .. External Functions ..
  326:       DOUBLE PRECISION   DZNRM2
  327:       LOGICAL            LSAME
  328:       EXTERNAL           DZNRM2, LSAME
  329: *     ..
  330: *     .. Intrinsic Functions
  331:       INTRINSIC          ATAN2, COS, MAX, MIN, SIN
  332:       INTRINSIC          DCMPLX, DCONJG
  333: *     ..
  334: *     .. Executable Statements ..
  335: *
  336: *     Test input arguments
  337: *
  338:       INFO = 0
  339:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  340:       IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN
  341:          Z1 = REALONE
  342:          Z2 = REALONE
  343:          Z3 = REALONE
  344:          Z4 = REALONE
  345:       ELSE
  346:          Z1 = REALONE
  347:          Z2 = -REALONE
  348:          Z3 = REALONE
  349:          Z4 = -REALONE
  350:       END IF
  351:       LQUERY = LWORK .EQ. -1
  352: *
  353:       IF( M .LT. 0 ) THEN
  354:          INFO = -3
  355:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  356:          INFO = -4
  357:       ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR.
  358:      $         Q .GT. M-Q ) THEN
  359:          INFO = -5
  360:       ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
  361:          INFO = -7
  362:       ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
  363:          INFO = -7
  364:       ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
  365:          INFO = -9
  366:       ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
  367:          INFO = -9
  368:       ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
  369:          INFO = -11
  370:       ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
  371:          INFO = -11
  372:       ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
  373:          INFO = -13
  374:       ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
  375:          INFO = -13
  376:       END IF
  377: *
  378: *     Compute workspace
  379: *
  380:       IF( INFO .EQ. 0 ) THEN
  381:          LWORKOPT = M - Q
  382:          LWORKMIN = M - Q
  383:          WORK(1) = LWORKOPT
  384:          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
  385:             INFO = -21
  386:          END IF
  387:       END IF
  388:       IF( INFO .NE. 0 ) THEN
  389:          CALL XERBLA( 'xORBDB', -INFO )
  390:          RETURN
  391:       ELSE IF( LQUERY ) THEN
  392:          RETURN
  393:       END IF
  394: *
  395: *     Handle column-major and row-major separately
  396: *
  397:       IF( COLMAJOR ) THEN
  398: *
  399: *        Reduce columns 1, ..., Q of X11, X12, X21, and X22 
  400: *
  401:          DO I = 1, Q
  402: *
  403:             IF( I .EQ. 1 ) THEN
  404:                CALL ZSCAL( P-I+1, DCMPLX( Z1, 0.0D0 ), X11(I,I), 1 )
  405:             ELSE
  406:                CALL ZSCAL( P-I+1, DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
  407:      $                     X11(I,I), 1 )
  408:                CALL ZAXPY( P-I+1, DCMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
  409:      $                     0.0D0 ), X12(I,I-1), 1, X11(I,I), 1 )
  410:             END IF
  411:             IF( I .EQ. 1 ) THEN
  412:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2, 0.0D0 ), X21(I,I), 1 )
  413:             ELSE
  414:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
  415:      $                     X21(I,I), 1 )
  416:                CALL ZAXPY( M-P-I+1, DCMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
  417:      $                     0.0D0 ), X22(I,I-1), 1, X21(I,I), 1 )
  418:             END IF
  419: *
  420:             THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), 1 ),
  421:      $                 DZNRM2( P-I+1, X11(I,I), 1 ) )
  422: *
  423:             CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
  424:             X11(I,I) = ONE
  425:             CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
  426:             X21(I,I) = ONE
  427: *
  428:             CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1, DCONJG(TAUP1(I)),
  429:      $                  X11(I,I+1), LDX11, WORK )
  430:             CALL ZLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1,
  431:      $                  DCONJG(TAUP1(I)), X12(I,I), LDX12, WORK )
  432:             CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1,
  433:      $                  DCONJG(TAUP2(I)), X21(I,I+1), LDX21, WORK )
  434:             CALL ZLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1,
  435:      $                  DCONJG(TAUP2(I)), X22(I,I), LDX22, WORK )
  436: *
  437:             IF( I .LT. Q ) THEN
  438:                CALL ZSCAL( Q-I, DCMPLX( -Z1*Z3*SIN(THETA(I)), 0.0D0 ),
  439:      $                     X11(I,I+1), LDX11 )
  440:                CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
  441:      $                     X21(I,I+1), LDX21, X11(I,I+1), LDX11 )
  442:             END IF
  443:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4*SIN(THETA(I)), 0.0D0 ),
  444:      $                  X12(I,I), LDX12 )
  445:             CALL ZAXPY( M-Q-I+1, DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
  446:      $                  X22(I,I), LDX22, X12(I,I), LDX12 )
  447: *
  448:             IF( I .LT. Q )
  449:      $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I,I+1), LDX11 ),
  450:      $                  DZNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
  451: *
  452:             IF( I .LT. Q ) THEN
  453:                CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
  454:                CALL ZLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
  455:      $                       TAUQ1(I) )
  456:                X11(I,I+1) = ONE
  457:             END IF
  458:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  459:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  460:      $                    TAUQ2(I) )
  461:             X12(I,I) = ONE
  462: *
  463:             IF( I .LT. Q ) THEN
  464:                CALL ZLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  465:      $                     X11(I+1,I+1), LDX11, WORK )
  466:                CALL ZLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  467:      $                     X21(I+1,I+1), LDX21, WORK )
  468:             END IF
  469:             CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  470:      $                  X12(I+1,I), LDX12, WORK )
  471:             CALL ZLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  472:      $                  X22(I+1,I), LDX22, WORK )
  473: *
  474:             IF( I .LT. Q )
  475:      $         CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
  476:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  477: *
  478:          END DO
  479: *
  480: *        Reduce columns Q + 1, ..., P of X12, X22
  481: *
  482:          DO I = Q + 1, P
  483: *
  484:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4, 0.0D0 ), X12(I,I),
  485:      $                  LDX12 )
  486:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  487:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  488:      $                    TAUQ2(I) )
  489:             X12(I,I) = ONE
  490: *
  491:             CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  492:      $                  X12(I+1,I), LDX12, WORK )
  493:             IF( M-P-Q .GE. 1 )
  494:      $         CALL ZLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
  495:      $                     TAUQ2(I), X22(Q+1,I), LDX22, WORK )
  496: *
  497:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  498: *
  499:          END DO
  500: *
  501: *        Reduce columns P + 1, ..., M - Q of X12, X22
  502: *
  503:          DO I = 1, M - P - Q
  504: *
  505:             CALL ZSCAL( M-P-Q-I+1, DCMPLX( Z2*Z4, 0.0D0 ),
  506:      $                  X22(Q+I,P+I), LDX22 )
  507:             CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
  508:             CALL ZLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
  509:      $                    LDX22, TAUQ2(P+I) )
  510:             X22(Q+I,P+I) = ONE
  511:             CALL ZLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
  512:      $                  TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
  513: *
  514:             CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
  515: *
  516:          END DO
  517: *
  518:       ELSE
  519: *
  520: *        Reduce columns 1, ..., Q of X11, X12, X21, X22
  521: *
  522:          DO I = 1, Q
  523: *
  524:             IF( I .EQ. 1 ) THEN
  525:                CALL ZSCAL( P-I+1, DCMPLX( Z1, 0.0D0 ), X11(I,I),
  526:      $                     LDX11 )
  527:             ELSE
  528:                CALL ZSCAL( P-I+1, DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
  529:      $                     X11(I,I), LDX11 )
  530:                CALL ZAXPY( P-I+1, DCMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
  531:      $                     0.0D0 ), X12(I-1,I), LDX12, X11(I,I), LDX11 )
  532:             END IF
  533:             IF( I .EQ. 1 ) THEN
  534:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2, 0.0D0 ), X21(I,I),
  535:      $                     LDX21 )
  536:             ELSE
  537:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
  538:      $                     X21(I,I), LDX21 )
  539:                CALL ZAXPY( M-P-I+1, DCMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
  540:      $                     0.0D0 ), X22(I-1,I), LDX22, X21(I,I), LDX21 )
  541:             END IF
  542: *
  543:             THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), LDX21 ),
  544:      $                 DZNRM2( P-I+1, X11(I,I), LDX11 ) )
  545: *
  546:             CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
  547:             CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
  548: *
  549:             CALL ZLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
  550:             X11(I,I) = ONE
  551:             CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
  552:      $                    TAUP2(I) )
  553:             X21(I,I) = ONE
  554: *
  555:             CALL ZLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
  556:      $                  X11(I+1,I), LDX11, WORK )
  557:             CALL ZLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I),
  558:      $                  X12(I,I), LDX12, WORK )
  559:             CALL ZLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
  560:      $                  X21(I+1,I), LDX21, WORK )
  561:             CALL ZLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
  562:      $                  TAUP2(I), X22(I,I), LDX22, WORK )
  563: *
  564:             CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
  565:             CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
  566: *
  567:             IF( I .LT. Q ) THEN
  568:                CALL ZSCAL( Q-I, DCMPLX( -Z1*Z3*SIN(THETA(I)), 0.0D0 ),
  569:      $                     X11(I+1,I), 1 )
  570:                CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
  571:      $                     X21(I+1,I), 1, X11(I+1,I), 1 )
  572:             END IF
  573:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4*SIN(THETA(I)), 0.0D0 ),
  574:      $                  X12(I,I), 1 )
  575:             CALL ZAXPY( M-Q-I+1, DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
  576:      $                  X22(I,I), 1, X12(I,I), 1 )
  577: *
  578:             IF( I .LT. Q )
  579:      $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I+1,I), 1 ),
  580:      $                  DZNRM2( M-Q-I+1, X12(I,I), 1 ) )
  581: *
  582:             IF( I .LT. Q ) THEN
  583:                CALL ZLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) )
  584:                X11(I+1,I) = ONE
  585:             END IF
  586:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  587:             X12(I,I) = ONE
  588: *
  589:             IF( I .LT. Q ) THEN
  590:                CALL ZLARF( 'L', Q-I, P-I, X11(I+1,I), 1,
  591:      $                     DCONJG(TAUQ1(I)), X11(I+1,I+1), LDX11, WORK )
  592:                CALL ZLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1,
  593:      $                     DCONJG(TAUQ1(I)), X21(I+1,I+1), LDX21, WORK )
  594:             END IF
  595:             CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
  596:      $                  DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
  597:             CALL ZLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1,
  598:      $                  DCONJG(TAUQ2(I)), X22(I,I+1), LDX22, WORK )
  599: *
  600:          END DO
  601: *
  602: *        Reduce columns Q + 1, ..., P of X12, X22
  603: *
  604:          DO I = Q + 1, P
  605: *
  606:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4, 0.0D0 ), X12(I,I), 1 )
  607:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  608:             X12(I,I) = ONE
  609: *
  610:             CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
  611:      $                  DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
  612:             IF( M-P-Q .GE. 1 )
  613:      $         CALL ZLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1,
  614:      $                     DCONJG(TAUQ2(I)), X22(I,Q+1), LDX22, WORK )
  615: *
  616:          END DO
  617: *
  618: *        Reduce columns P + 1, ..., M - Q of X12, X22
  619: *
  620:          DO I = 1, M - P - Q
  621: *
  622:             CALL ZSCAL( M-P-Q-I+1, DCMPLX( Z2*Z4, 0.0D0 ),
  623:      $                  X22(P+I,Q+I), 1 )
  624:             CALL ZLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
  625:      $                    TAUQ2(P+I) )
  626:             X22(P+I,Q+I) = ONE
  627: *
  628:             CALL ZLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
  629:      $                  DCONJG(TAUQ2(P+I)), X22(P+I,Q+I+1), LDX22,
  630:      $                  WORK )
  631: *
  632:          END DO
  633: *
  634:       END IF
  635: *
  636:       RETURN
  637: *
  638: *     End of ZUNBDB
  639: *
  640:       END
  641: 

CVSweb interface <joel.bertrand@systella.fr>