File:  [local] / rpl / lapack / lapack / zunbdb.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:43:23 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZUNBDB
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZUNBDB + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
   22: *                          X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
   23: *                          TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          SIGNS, TRANS
   27: *       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
   28: *      $                   Q
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   PHI( * ), THETA( * )
   32: *       COMPLEX*16         TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
   33: *      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
   34: *      $                   X21( LDX21, * ), X22( LDX22, * )
   35: *       ..
   36: *  
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZUNBDB simultaneously bidiagonalizes the blocks of an M-by-M
   44: *> partitioned unitary matrix X:
   45: *>
   46: *>                                 [ B11 | B12 0  0 ]
   47: *>     [ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**H
   48: *> X = [-----------] = [---------] [----------------] [---------]   .
   49: *>     [ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
   50: *>                                 [  0  |  0  0  I ]
   51: *>
   52: *> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
   53: *> not the case, then X must be transposed and/or permuted. This can be
   54: *> done in constant time using the TRANS and SIGNS options. See ZUNCSD
   55: *> for details.)
   56: *>
   57: *> The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
   58: *> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
   59: *> represented implicitly by Householder vectors.
   60: *>
   61: *> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
   62: *> implicitly by angles THETA, PHI.
   63: *> \endverbatim
   64: *
   65: *  Arguments:
   66: *  ==========
   67: *
   68: *> \param[in] TRANS
   69: *> \verbatim
   70: *>          TRANS is CHARACTER
   71: *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
   72: *>                      order;
   73: *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
   74: *>                      major order.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] SIGNS
   78: *> \verbatim
   79: *>          SIGNS is CHARACTER
   80: *>          = 'O':      The lower-left block is made nonpositive (the
   81: *>                      "other" convention);
   82: *>          otherwise:  The upper-right block is made nonpositive (the
   83: *>                      "default" convention).
   84: *> \endverbatim
   85: *>
   86: *> \param[in] M
   87: *> \verbatim
   88: *>          M is INTEGER
   89: *>          The number of rows and columns in X.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] P
   93: *> \verbatim
   94: *>          P is INTEGER
   95: *>          The number of rows in X11 and X12. 0 <= P <= M.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] Q
   99: *> \verbatim
  100: *>          Q is INTEGER
  101: *>          The number of columns in X11 and X21. 0 <= Q <=
  102: *>          MIN(P,M-P,M-Q).
  103: *> \endverbatim
  104: *>
  105: *> \param[in,out] X11
  106: *> \verbatim
  107: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
  108: *>          On entry, the top-left block of the unitary matrix to be
  109: *>          reduced. On exit, the form depends on TRANS:
  110: *>          If TRANS = 'N', then
  111: *>             the columns of tril(X11) specify reflectors for P1,
  112: *>             the rows of triu(X11,1) specify reflectors for Q1;
  113: *>          else TRANS = 'T', and
  114: *>             the rows of triu(X11) specify reflectors for P1,
  115: *>             the columns of tril(X11,-1) specify reflectors for Q1.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] LDX11
  119: *> \verbatim
  120: *>          LDX11 is INTEGER
  121: *>          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
  122: *>          P; else LDX11 >= Q.
  123: *> \endverbatim
  124: *>
  125: *> \param[in,out] X12
  126: *> \verbatim
  127: *>          X12 is COMPLEX*16 array, dimension (LDX12,M-Q)
  128: *>          On entry, the top-right block of the unitary matrix to
  129: *>          be reduced. On exit, the form depends on TRANS:
  130: *>          If TRANS = 'N', then
  131: *>             the rows of triu(X12) specify the first P reflectors for
  132: *>             Q2;
  133: *>          else TRANS = 'T', and
  134: *>             the columns of tril(X12) specify the first P reflectors
  135: *>             for Q2.
  136: *> \endverbatim
  137: *>
  138: *> \param[in] LDX12
  139: *> \verbatim
  140: *>          LDX12 is INTEGER
  141: *>          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
  142: *>          P; else LDX11 >= M-Q.
  143: *> \endverbatim
  144: *>
  145: *> \param[in,out] X21
  146: *> \verbatim
  147: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
  148: *>          On entry, the bottom-left block of the unitary matrix to
  149: *>          be reduced. On exit, the form depends on TRANS:
  150: *>          If TRANS = 'N', then
  151: *>             the columns of tril(X21) specify reflectors for P2;
  152: *>          else TRANS = 'T', and
  153: *>             the rows of triu(X21) specify reflectors for P2.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] LDX21
  157: *> \verbatim
  158: *>          LDX21 is INTEGER
  159: *>          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
  160: *>          M-P; else LDX21 >= Q.
  161: *> \endverbatim
  162: *>
  163: *> \param[in,out] X22
  164: *> \verbatim
  165: *>          X22 is COMPLEX*16 array, dimension (LDX22,M-Q)
  166: *>          On entry, the bottom-right block of the unitary matrix to
  167: *>          be reduced. On exit, the form depends on TRANS:
  168: *>          If TRANS = 'N', then
  169: *>             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
  170: *>             M-P-Q reflectors for Q2,
  171: *>          else TRANS = 'T', and
  172: *>             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
  173: *>             M-P-Q reflectors for P2.
  174: *> \endverbatim
  175: *>
  176: *> \param[in] LDX22
  177: *> \verbatim
  178: *>          LDX22 is INTEGER
  179: *>          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
  180: *>          M-P; else LDX22 >= M-Q.
  181: *> \endverbatim
  182: *>
  183: *> \param[out] THETA
  184: *> \verbatim
  185: *>          THETA is DOUBLE PRECISION array, dimension (Q)
  186: *>          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  187: *>          be computed from the angles THETA and PHI. See Further
  188: *>          Details.
  189: *> \endverbatim
  190: *>
  191: *> \param[out] PHI
  192: *> \verbatim
  193: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
  194: *>          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  195: *>          be computed from the angles THETA and PHI. See Further
  196: *>          Details.
  197: *> \endverbatim
  198: *>
  199: *> \param[out] TAUP1
  200: *> \verbatim
  201: *>          TAUP1 is COMPLEX*16 array, dimension (P)
  202: *>          The scalar factors of the elementary reflectors that define
  203: *>          P1.
  204: *> \endverbatim
  205: *>
  206: *> \param[out] TAUP2
  207: *> \verbatim
  208: *>          TAUP2 is COMPLEX*16 array, dimension (M-P)
  209: *>          The scalar factors of the elementary reflectors that define
  210: *>          P2.
  211: *> \endverbatim
  212: *>
  213: *> \param[out] TAUQ1
  214: *> \verbatim
  215: *>          TAUQ1 is COMPLEX*16 array, dimension (Q)
  216: *>          The scalar factors of the elementary reflectors that define
  217: *>          Q1.
  218: *> \endverbatim
  219: *>
  220: *> \param[out] TAUQ2
  221: *> \verbatim
  222: *>          TAUQ2 is COMPLEX*16 array, dimension (M-Q)
  223: *>          The scalar factors of the elementary reflectors that define
  224: *>          Q2.
  225: *> \endverbatim
  226: *>
  227: *> \param[out] WORK
  228: *> \verbatim
  229: *>          WORK is COMPLEX*16 array, dimension (LWORK)
  230: *> \endverbatim
  231: *>
  232: *> \param[in] LWORK
  233: *> \verbatim
  234: *>          LWORK is INTEGER
  235: *>          The dimension of the array WORK. LWORK >= M-Q.
  236: *>
  237: *>          If LWORK = -1, then a workspace query is assumed; the routine
  238: *>          only calculates the optimal size of the WORK array, returns
  239: *>          this value as the first entry of the WORK array, and no error
  240: *>          message related to LWORK is issued by XERBLA.
  241: *> \endverbatim
  242: *>
  243: *> \param[out] INFO
  244: *> \verbatim
  245: *>          INFO is INTEGER
  246: *>          = 0:  successful exit.
  247: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  248: *> \endverbatim
  249: *
  250: *  Authors:
  251: *  ========
  252: *
  253: *> \author Univ. of Tennessee 
  254: *> \author Univ. of California Berkeley 
  255: *> \author Univ. of Colorado Denver 
  256: *> \author NAG Ltd. 
  257: *
  258: *> \date November 2011
  259: *
  260: *> \ingroup complex16OTHERcomputational
  261: *
  262: *> \par Further Details:
  263: *  =====================
  264: *>
  265: *> \verbatim
  266: *>
  267: *>  The bidiagonal blocks B11, B12, B21, and B22 are represented
  268: *>  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
  269: *>  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
  270: *>  lower bidiagonal. Every entry in each bidiagonal band is a product
  271: *>  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
  272: *>  [1] or ZUNCSD for details.
  273: *>
  274: *>  P1, P2, Q1, and Q2 are represented as products of elementary
  275: *>  reflectors. See ZUNCSD for details on generating P1, P2, Q1, and Q2
  276: *>  using ZUNGQR and ZUNGLQ.
  277: *> \endverbatim
  278: *
  279: *> \par References:
  280: *  ================
  281: *>
  282: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  283: *>      Algorithms, 50(1):33-65, 2009.
  284: *>
  285: *  =====================================================================
  286:       SUBROUTINE ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
  287:      $                   X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
  288:      $                   TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
  289: *
  290: *  -- LAPACK computational routine (version 3.4.0) --
  291: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  292: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  293: *     November 2011
  294: *
  295: *     .. Scalar Arguments ..
  296:       CHARACTER          SIGNS, TRANS
  297:       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
  298:      $                   Q
  299: *     ..
  300: *     .. Array Arguments ..
  301:       DOUBLE PRECISION   PHI( * ), THETA( * )
  302:       COMPLEX*16         TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
  303:      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
  304:      $                   X21( LDX21, * ), X22( LDX22, * )
  305: *     ..
  306: *
  307: *  ====================================================================
  308: *
  309: *     .. Parameters ..
  310:       DOUBLE PRECISION   REALONE
  311:       PARAMETER          ( REALONE = 1.0D0 )
  312:       COMPLEX*16         NEGONE, ONE
  313:       PARAMETER          ( NEGONE = (-1.0D0,0.0D0),
  314:      $                     ONE = (1.0D0,0.0D0) )
  315: *     ..
  316: *     .. Local Scalars ..
  317:       LOGICAL            COLMAJOR, LQUERY
  318:       INTEGER            I, LWORKMIN, LWORKOPT
  319:       DOUBLE PRECISION   Z1, Z2, Z3, Z4
  320: *     ..
  321: *     .. External Subroutines ..
  322:       EXTERNAL           ZAXPY, ZLARF, ZLARFGP, ZSCAL, XERBLA
  323:       EXTERNAL           ZLACGV
  324: *
  325: *     ..
  326: *     .. External Functions ..
  327:       DOUBLE PRECISION   DZNRM2
  328:       LOGICAL            LSAME
  329:       EXTERNAL           DZNRM2, LSAME
  330: *     ..
  331: *     .. Intrinsic Functions
  332:       INTRINSIC          ATAN2, COS, MAX, MIN, SIN
  333:       INTRINSIC          DCMPLX, DCONJG
  334: *     ..
  335: *     .. Executable Statements ..
  336: *
  337: *     Test input arguments
  338: *
  339:       INFO = 0
  340:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  341:       IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN
  342:          Z1 = REALONE
  343:          Z2 = REALONE
  344:          Z3 = REALONE
  345:          Z4 = REALONE
  346:       ELSE
  347:          Z1 = REALONE
  348:          Z2 = -REALONE
  349:          Z3 = REALONE
  350:          Z4 = -REALONE
  351:       END IF
  352:       LQUERY = LWORK .EQ. -1
  353: *
  354:       IF( M .LT. 0 ) THEN
  355:          INFO = -3
  356:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  357:          INFO = -4
  358:       ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR.
  359:      $         Q .GT. M-Q ) THEN
  360:          INFO = -5
  361:       ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
  362:          INFO = -7
  363:       ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
  364:          INFO = -7
  365:       ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
  366:          INFO = -9
  367:       ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
  368:          INFO = -9
  369:       ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
  370:          INFO = -11
  371:       ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
  372:          INFO = -11
  373:       ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
  374:          INFO = -13
  375:       ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
  376:          INFO = -13
  377:       END IF
  378: *
  379: *     Compute workspace
  380: *
  381:       IF( INFO .EQ. 0 ) THEN
  382:          LWORKOPT = M - Q
  383:          LWORKMIN = M - Q
  384:          WORK(1) = LWORKOPT
  385:          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
  386:             INFO = -21
  387:          END IF
  388:       END IF
  389:       IF( INFO .NE. 0 ) THEN
  390:          CALL XERBLA( 'xORBDB', -INFO )
  391:          RETURN
  392:       ELSE IF( LQUERY ) THEN
  393:          RETURN
  394:       END IF
  395: *
  396: *     Handle column-major and row-major separately
  397: *
  398:       IF( COLMAJOR ) THEN
  399: *
  400: *        Reduce columns 1, ..., Q of X11, X12, X21, and X22 
  401: *
  402:          DO I = 1, Q
  403: *
  404:             IF( I .EQ. 1 ) THEN
  405:                CALL ZSCAL( P-I+1, DCMPLX( Z1, 0.0D0 ), X11(I,I), 1 )
  406:             ELSE
  407:                CALL ZSCAL( P-I+1, DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
  408:      $                     X11(I,I), 1 )
  409:                CALL ZAXPY( P-I+1, DCMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
  410:      $                     0.0D0 ), X12(I,I-1), 1, X11(I,I), 1 )
  411:             END IF
  412:             IF( I .EQ. 1 ) THEN
  413:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2, 0.0D0 ), X21(I,I), 1 )
  414:             ELSE
  415:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
  416:      $                     X21(I,I), 1 )
  417:                CALL ZAXPY( M-P-I+1, DCMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
  418:      $                     0.0D0 ), X22(I,I-1), 1, X21(I,I), 1 )
  419:             END IF
  420: *
  421:             THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), 1 ),
  422:      $                 DZNRM2( P-I+1, X11(I,I), 1 ) )
  423: *
  424:             CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
  425:             X11(I,I) = ONE
  426:             CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
  427:             X21(I,I) = ONE
  428: *
  429:             CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1, DCONJG(TAUP1(I)),
  430:      $                  X11(I,I+1), LDX11, WORK )
  431:             CALL ZLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1,
  432:      $                  DCONJG(TAUP1(I)), X12(I,I), LDX12, WORK )
  433:             CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1,
  434:      $                  DCONJG(TAUP2(I)), X21(I,I+1), LDX21, WORK )
  435:             CALL ZLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1,
  436:      $                  DCONJG(TAUP2(I)), X22(I,I), LDX22, WORK )
  437: *
  438:             IF( I .LT. Q ) THEN
  439:                CALL ZSCAL( Q-I, DCMPLX( -Z1*Z3*SIN(THETA(I)), 0.0D0 ),
  440:      $                     X11(I,I+1), LDX11 )
  441:                CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
  442:      $                     X21(I,I+1), LDX21, X11(I,I+1), LDX11 )
  443:             END IF
  444:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4*SIN(THETA(I)), 0.0D0 ),
  445:      $                  X12(I,I), LDX12 )
  446:             CALL ZAXPY( M-Q-I+1, DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
  447:      $                  X22(I,I), LDX22, X12(I,I), LDX12 )
  448: *
  449:             IF( I .LT. Q )
  450:      $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I,I+1), LDX11 ),
  451:      $                  DZNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
  452: *
  453:             IF( I .LT. Q ) THEN
  454:                CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
  455:                CALL ZLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
  456:      $                       TAUQ1(I) )
  457:                X11(I,I+1) = ONE
  458:             END IF
  459:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  460:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  461:      $                    TAUQ2(I) )
  462:             X12(I,I) = ONE
  463: *
  464:             IF( I .LT. Q ) THEN
  465:                CALL ZLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  466:      $                     X11(I+1,I+1), LDX11, WORK )
  467:                CALL ZLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  468:      $                     X21(I+1,I+1), LDX21, WORK )
  469:             END IF
  470:             CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  471:      $                  X12(I+1,I), LDX12, WORK )
  472:             CALL ZLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  473:      $                  X22(I+1,I), LDX22, WORK )
  474: *
  475:             IF( I .LT. Q )
  476:      $         CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
  477:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  478: *
  479:          END DO
  480: *
  481: *        Reduce columns Q + 1, ..., P of X12, X22
  482: *
  483:          DO I = Q + 1, P
  484: *
  485:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4, 0.0D0 ), X12(I,I),
  486:      $                  LDX12 )
  487:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  488:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  489:      $                    TAUQ2(I) )
  490:             X12(I,I) = ONE
  491: *
  492:             CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  493:      $                  X12(I+1,I), LDX12, WORK )
  494:             IF( M-P-Q .GE. 1 )
  495:      $         CALL ZLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
  496:      $                     TAUQ2(I), X22(Q+1,I), LDX22, WORK )
  497: *
  498:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  499: *
  500:          END DO
  501: *
  502: *        Reduce columns P + 1, ..., M - Q of X12, X22
  503: *
  504:          DO I = 1, M - P - Q
  505: *
  506:             CALL ZSCAL( M-P-Q-I+1, DCMPLX( Z2*Z4, 0.0D0 ),
  507:      $                  X22(Q+I,P+I), LDX22 )
  508:             CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
  509:             CALL ZLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
  510:      $                    LDX22, TAUQ2(P+I) )
  511:             X22(Q+I,P+I) = ONE
  512:             CALL ZLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
  513:      $                  TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
  514: *
  515:             CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
  516: *
  517:          END DO
  518: *
  519:       ELSE
  520: *
  521: *        Reduce columns 1, ..., Q of X11, X12, X21, X22
  522: *
  523:          DO I = 1, Q
  524: *
  525:             IF( I .EQ. 1 ) THEN
  526:                CALL ZSCAL( P-I+1, DCMPLX( Z1, 0.0D0 ), X11(I,I),
  527:      $                     LDX11 )
  528:             ELSE
  529:                CALL ZSCAL( P-I+1, DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
  530:      $                     X11(I,I), LDX11 )
  531:                CALL ZAXPY( P-I+1, DCMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
  532:      $                     0.0D0 ), X12(I-1,I), LDX12, X11(I,I), LDX11 )
  533:             END IF
  534:             IF( I .EQ. 1 ) THEN
  535:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2, 0.0D0 ), X21(I,I),
  536:      $                     LDX21 )
  537:             ELSE
  538:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
  539:      $                     X21(I,I), LDX21 )
  540:                CALL ZAXPY( M-P-I+1, DCMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
  541:      $                     0.0D0 ), X22(I-1,I), LDX22, X21(I,I), LDX21 )
  542:             END IF
  543: *
  544:             THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), LDX21 ),
  545:      $                 DZNRM2( P-I+1, X11(I,I), LDX11 ) )
  546: *
  547:             CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
  548:             CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
  549: *
  550:             CALL ZLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
  551:             X11(I,I) = ONE
  552:             CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
  553:      $                    TAUP2(I) )
  554:             X21(I,I) = ONE
  555: *
  556:             CALL ZLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
  557:      $                  X11(I+1,I), LDX11, WORK )
  558:             CALL ZLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I),
  559:      $                  X12(I,I), LDX12, WORK )
  560:             CALL ZLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
  561:      $                  X21(I+1,I), LDX21, WORK )
  562:             CALL ZLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
  563:      $                  TAUP2(I), X22(I,I), LDX22, WORK )
  564: *
  565:             CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
  566:             CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
  567: *
  568:             IF( I .LT. Q ) THEN
  569:                CALL ZSCAL( Q-I, DCMPLX( -Z1*Z3*SIN(THETA(I)), 0.0D0 ),
  570:      $                     X11(I+1,I), 1 )
  571:                CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
  572:      $                     X21(I+1,I), 1, X11(I+1,I), 1 )
  573:             END IF
  574:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4*SIN(THETA(I)), 0.0D0 ),
  575:      $                  X12(I,I), 1 )
  576:             CALL ZAXPY( M-Q-I+1, DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
  577:      $                  X22(I,I), 1, X12(I,I), 1 )
  578: *
  579:             IF( I .LT. Q )
  580:      $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I+1,I), 1 ),
  581:      $                  DZNRM2( M-Q-I+1, X12(I,I), 1 ) )
  582: *
  583:             IF( I .LT. Q ) THEN
  584:                CALL ZLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) )
  585:                X11(I+1,I) = ONE
  586:             END IF
  587:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  588:             X12(I,I) = ONE
  589: *
  590:             IF( I .LT. Q ) THEN
  591:                CALL ZLARF( 'L', Q-I, P-I, X11(I+1,I), 1,
  592:      $                     DCONJG(TAUQ1(I)), X11(I+1,I+1), LDX11, WORK )
  593:                CALL ZLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1,
  594:      $                     DCONJG(TAUQ1(I)), X21(I+1,I+1), LDX21, WORK )
  595:             END IF
  596:             CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
  597:      $                  DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
  598:             CALL ZLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1,
  599:      $                  DCONJG(TAUQ2(I)), X22(I,I+1), LDX22, WORK )
  600: *
  601:          END DO
  602: *
  603: *        Reduce columns Q + 1, ..., P of X12, X22
  604: *
  605:          DO I = Q + 1, P
  606: *
  607:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4, 0.0D0 ), X12(I,I), 1 )
  608:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  609:             X12(I,I) = ONE
  610: *
  611:             CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
  612:      $                  DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
  613:             IF( M-P-Q .GE. 1 )
  614:      $         CALL ZLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1,
  615:      $                     DCONJG(TAUQ2(I)), X22(I,Q+1), LDX22, WORK )
  616: *
  617:          END DO
  618: *
  619: *        Reduce columns P + 1, ..., M - Q of X12, X22
  620: *
  621:          DO I = 1, M - P - Q
  622: *
  623:             CALL ZSCAL( M-P-Q-I+1, DCMPLX( Z2*Z4, 0.0D0 ),
  624:      $                  X22(P+I,Q+I), 1 )
  625:             CALL ZLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
  626:      $                    TAUQ2(P+I) )
  627:             X22(P+I,Q+I) = ONE
  628: *
  629:             CALL ZLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
  630:      $                  DCONJG(TAUQ2(P+I)), X22(P+I,Q+I+1), LDX22,
  631:      $                  WORK )
  632: *
  633:          END DO
  634: *
  635:       END IF
  636: *
  637:       RETURN
  638: *
  639: *     End of ZUNBDB
  640: *
  641:       END
  642: 

CVSweb interface <joel.bertrand@systella.fr>