File:  [local] / rpl / lapack / lapack / zunbdb.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:40:27 2011 UTC (12 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
Cohérence.

    1:       SUBROUTINE ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
    2:      $                   X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
    3:      $                   TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
    4:       IMPLICIT NONE
    5: *
    6: *  -- LAPACK routine ((version 3.3.0)) --
    7: *
    8: *  -- Contributed by Brian Sutton of the Randolph-Macon College --
    9: *  -- November 2010
   10: *
   11: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
   12: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--     
   13: *
   14: *     .. Scalar Arguments ..
   15:       CHARACTER          SIGNS, TRANS
   16:       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
   17:      $                   Q
   18: *     ..
   19: *     .. Array Arguments ..
   20:       DOUBLE PRECISION   PHI( * ), THETA( * )
   21:       COMPLEX*16         TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
   22:      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
   23:      $                   X21( LDX21, * ), X22( LDX22, * )
   24: *     ..
   25: *
   26: *  Purpose
   27: *  =======
   28: *
   29: *  ZUNBDB simultaneously bidiagonalizes the blocks of an M-by-M
   30: *  partitioned unitary matrix X:
   31: *
   32: *                                  [ B11 | B12 0  0 ]
   33: *      [ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**H
   34: *  X = [-----------] = [---------] [----------------] [---------]   .
   35: *      [ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
   36: *                                  [  0  |  0  0  I ]
   37: *
   38: *  X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
   39: *  not the case, then X must be transposed and/or permuted. This can be
   40: *  done in constant time using the TRANS and SIGNS options. See ZUNCSD
   41: *  for details.)
   42: *
   43: *  The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
   44: *  (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
   45: *  represented implicitly by Householder vectors.
   46: *
   47: *  B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
   48: *  implicitly by angles THETA, PHI.
   49: *
   50: *  Arguments
   51: *  =========
   52: *
   53: *  TRANS   (input) CHARACTER
   54: *          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
   55: *                      order;
   56: *          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
   57: *                      major order.
   58: *
   59: *  SIGNS   (input) CHARACTER
   60: *          = 'O':      The lower-left block is made nonpositive (the
   61: *                      "other" convention);
   62: *          otherwise:  The upper-right block is made nonpositive (the
   63: *                      "default" convention).
   64: *
   65: *  M       (input) INTEGER
   66: *          The number of rows and columns in X.
   67: *
   68: *  P       (input) INTEGER
   69: *          The number of rows in X11 and X12. 0 <= P <= M.
   70: *
   71: *  Q       (input) INTEGER
   72: *          The number of columns in X11 and X21. 0 <= Q <=
   73: *          MIN(P,M-P,M-Q).
   74: *
   75: *  X11     (input/output) COMPLEX*16 array, dimension (LDX11,Q)
   76: *          On entry, the top-left block of the unitary matrix to be
   77: *          reduced. On exit, the form depends on TRANS:
   78: *          If TRANS = 'N', then
   79: *             the columns of tril(X11) specify reflectors for P1,
   80: *             the rows of triu(X11,1) specify reflectors for Q1;
   81: *          else TRANS = 'T', and
   82: *             the rows of triu(X11) specify reflectors for P1,
   83: *             the columns of tril(X11,-1) specify reflectors for Q1.
   84: *
   85: *  LDX11   (input) INTEGER
   86: *          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
   87: *          P; else LDX11 >= Q.
   88: *
   89: *  X12     (input/output) COMPLEX*16 array, dimension (LDX12,M-Q)
   90: *          On entry, the top-right block of the unitary matrix to
   91: *          be reduced. On exit, the form depends on TRANS:
   92: *          If TRANS = 'N', then
   93: *             the rows of triu(X12) specify the first P reflectors for
   94: *             Q2;
   95: *          else TRANS = 'T', and
   96: *             the columns of tril(X12) specify the first P reflectors
   97: *             for Q2.
   98: *
   99: *  LDX12   (input) INTEGER
  100: *          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
  101: *          P; else LDX11 >= M-Q.
  102: *
  103: *  X21     (input/output) COMPLEX*16 array, dimension (LDX21,Q)
  104: *          On entry, the bottom-left block of the unitary matrix to
  105: *          be reduced. On exit, the form depends on TRANS:
  106: *          If TRANS = 'N', then
  107: *             the columns of tril(X21) specify reflectors for P2;
  108: *          else TRANS = 'T', and
  109: *             the rows of triu(X21) specify reflectors for P2.
  110: *
  111: *  LDX21   (input) INTEGER
  112: *          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
  113: *          M-P; else LDX21 >= Q.
  114: *
  115: *  X22     (input/output) COMPLEX*16 array, dimension (LDX22,M-Q)
  116: *          On entry, the bottom-right block of the unitary matrix to
  117: *          be reduced. On exit, the form depends on TRANS:
  118: *          If TRANS = 'N', then
  119: *             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
  120: *             M-P-Q reflectors for Q2,
  121: *          else TRANS = 'T', and
  122: *             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
  123: *             M-P-Q reflectors for P2.
  124: *
  125: *  LDX22   (input) INTEGER
  126: *          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
  127: *          M-P; else LDX22 >= M-Q.
  128: *
  129: *  THETA   (output) DOUBLE PRECISION array, dimension (Q)
  130: *          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  131: *          be computed from the angles THETA and PHI. See Further
  132: *          Details.
  133: *
  134: *  PHI     (output) DOUBLE PRECISION array, dimension (Q-1)
  135: *          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  136: *          be computed from the angles THETA and PHI. See Further
  137: *          Details.
  138: *
  139: *  TAUP1   (output) COMPLEX*16 array, dimension (P)
  140: *          The scalar factors of the elementary reflectors that define
  141: *          P1.
  142: *
  143: *  TAUP2   (output) COMPLEX*16 array, dimension (M-P)
  144: *          The scalar factors of the elementary reflectors that define
  145: *          P2.
  146: *
  147: *  TAUQ1   (output) COMPLEX*16 array, dimension (Q)
  148: *          The scalar factors of the elementary reflectors that define
  149: *          Q1.
  150: *
  151: *  TAUQ2   (output) COMPLEX*16 array, dimension (M-Q)
  152: *          The scalar factors of the elementary reflectors that define
  153: *          Q2.
  154: *
  155: *  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
  156: *
  157: *  LWORK   (input) INTEGER
  158: *          The dimension of the array WORK. LWORK >= M-Q.
  159: *
  160: *          If LWORK = -1, then a workspace query is assumed; the routine
  161: *          only calculates the optimal size of the WORK array, returns
  162: *          this value as the first entry of the WORK array, and no error
  163: *          message related to LWORK is issued by XERBLA.
  164: *
  165: *  INFO    (output) INTEGER
  166: *          = 0:  successful exit.
  167: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  168: *
  169: *  Further Details
  170: *  ===============
  171: *
  172: *  The bidiagonal blocks B11, B12, B21, and B22 are represented
  173: *  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
  174: *  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
  175: *  lower bidiagonal. Every entry in each bidiagonal band is a product
  176: *  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
  177: *  [1] or ZUNCSD for details.
  178: *
  179: *  P1, P2, Q1, and Q2 are represented as products of elementary
  180: *  reflectors. See ZUNCSD for details on generating P1, P2, Q1, and Q2
  181: *  using ZUNGQR and ZUNGLQ.
  182: *
  183: *  Reference
  184: *  =========
  185: *
  186: *  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  187: *      Algorithms, 50(1):33-65, 2009.
  188: *
  189: *  ====================================================================
  190: *
  191: *     .. Parameters ..
  192:       DOUBLE PRECISION   REALONE
  193:       PARAMETER          ( REALONE = 1.0D0 )
  194:       COMPLEX*16         NEGONE, ONE
  195:       PARAMETER          ( NEGONE = (-1.0D0,0.0D0),
  196:      $                     ONE = (1.0D0,0.0D0) )
  197: *     ..
  198: *     .. Local Scalars ..
  199:       LOGICAL            COLMAJOR, LQUERY
  200:       INTEGER            I, LWORKMIN, LWORKOPT
  201:       DOUBLE PRECISION   Z1, Z2, Z3, Z4
  202: *     ..
  203: *     .. External Subroutines ..
  204:       EXTERNAL           ZAXPY, ZLARF, ZLARFGP, ZSCAL, XERBLA
  205:       EXTERNAL           ZLACGV
  206: *
  207: *     ..
  208: *     .. External Functions ..
  209:       DOUBLE PRECISION   DZNRM2
  210:       LOGICAL            LSAME
  211:       EXTERNAL           DZNRM2, LSAME
  212: *     ..
  213: *     .. Intrinsic Functions
  214:       INTRINSIC          ATAN2, COS, MAX, MIN, SIN
  215:       INTRINSIC          DCMPLX, DCONJG
  216: *     ..
  217: *     .. Executable Statements ..
  218: *
  219: *     Test input arguments
  220: *
  221:       INFO = 0
  222:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  223:       IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN
  224:          Z1 = REALONE
  225:          Z2 = REALONE
  226:          Z3 = REALONE
  227:          Z4 = REALONE
  228:       ELSE
  229:          Z1 = REALONE
  230:          Z2 = -REALONE
  231:          Z3 = REALONE
  232:          Z4 = -REALONE
  233:       END IF
  234:       LQUERY = LWORK .EQ. -1
  235: *
  236:       IF( M .LT. 0 ) THEN
  237:          INFO = -3
  238:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  239:          INFO = -4
  240:       ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR.
  241:      $         Q .GT. M-Q ) THEN
  242:          INFO = -5
  243:       ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
  244:          INFO = -7
  245:       ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
  246:          INFO = -7
  247:       ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
  248:          INFO = -9
  249:       ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
  250:          INFO = -9
  251:       ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
  252:          INFO = -11
  253:       ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
  254:          INFO = -11
  255:       ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
  256:          INFO = -13
  257:       ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
  258:          INFO = -13
  259:       END IF
  260: *
  261: *     Compute workspace
  262: *
  263:       IF( INFO .EQ. 0 ) THEN
  264:          LWORKOPT = M - Q
  265:          LWORKMIN = M - Q
  266:          WORK(1) = LWORKOPT
  267:          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
  268:             INFO = -21
  269:          END IF
  270:       END IF
  271:       IF( INFO .NE. 0 ) THEN
  272:          CALL XERBLA( 'xORBDB', -INFO )
  273:          RETURN
  274:       ELSE IF( LQUERY ) THEN
  275:          RETURN
  276:       END IF
  277: *
  278: *     Handle column-major and row-major separately
  279: *
  280:       IF( COLMAJOR ) THEN
  281: *
  282: *        Reduce columns 1, ..., Q of X11, X12, X21, and X22 
  283: *
  284:          DO I = 1, Q
  285: *
  286:             IF( I .EQ. 1 ) THEN
  287:                CALL ZSCAL( P-I+1, DCMPLX( Z1, 0.0D0 ), X11(I,I), 1 )
  288:             ELSE
  289:                CALL ZSCAL( P-I+1, DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
  290:      $                     X11(I,I), 1 )
  291:                CALL ZAXPY( P-I+1, DCMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
  292:      $                     0.0D0 ), X12(I,I-1), 1, X11(I,I), 1 )
  293:             END IF
  294:             IF( I .EQ. 1 ) THEN
  295:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2, 0.0D0 ), X21(I,I), 1 )
  296:             ELSE
  297:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
  298:      $                     X21(I,I), 1 )
  299:                CALL ZAXPY( M-P-I+1, DCMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
  300:      $                     0.0D0 ), X22(I,I-1), 1, X21(I,I), 1 )
  301:             END IF
  302: *
  303:             THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), 1 ),
  304:      $                 DZNRM2( P-I+1, X11(I,I), 1 ) )
  305: *
  306:             CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
  307:             X11(I,I) = ONE
  308:             CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
  309:             X21(I,I) = ONE
  310: *
  311:             CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1, DCONJG(TAUP1(I)),
  312:      $                  X11(I,I+1), LDX11, WORK )
  313:             CALL ZLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1,
  314:      $                  DCONJG(TAUP1(I)), X12(I,I), LDX12, WORK )
  315:             CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1,
  316:      $                  DCONJG(TAUP2(I)), X21(I,I+1), LDX21, WORK )
  317:             CALL ZLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1,
  318:      $                  DCONJG(TAUP2(I)), X22(I,I), LDX22, WORK )
  319: *
  320:             IF( I .LT. Q ) THEN
  321:                CALL ZSCAL( Q-I, DCMPLX( -Z1*Z3*SIN(THETA(I)), 0.0D0 ),
  322:      $                     X11(I,I+1), LDX11 )
  323:                CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
  324:      $                     X21(I,I+1), LDX21, X11(I,I+1), LDX11 )
  325:             END IF
  326:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4*SIN(THETA(I)), 0.0D0 ),
  327:      $                  X12(I,I), LDX12 )
  328:             CALL ZAXPY( M-Q-I+1, DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
  329:      $                  X22(I,I), LDX22, X12(I,I), LDX12 )
  330: *
  331:             IF( I .LT. Q )
  332:      $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I,I+1), LDX11 ),
  333:      $                  DZNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
  334: *
  335:             IF( I .LT. Q ) THEN
  336:                CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
  337:                CALL ZLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
  338:      $                       TAUQ1(I) )
  339:                X11(I,I+1) = ONE
  340:             END IF
  341:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  342:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  343:      $                    TAUQ2(I) )
  344:             X12(I,I) = ONE
  345: *
  346:             IF( I .LT. Q ) THEN
  347:                CALL ZLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  348:      $                     X11(I+1,I+1), LDX11, WORK )
  349:                CALL ZLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  350:      $                     X21(I+1,I+1), LDX21, WORK )
  351:             END IF
  352:             CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  353:      $                  X12(I+1,I), LDX12, WORK )
  354:             CALL ZLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  355:      $                  X22(I+1,I), LDX22, WORK )
  356: *
  357:             IF( I .LT. Q )
  358:      $         CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
  359:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  360: *
  361:          END DO
  362: *
  363: *        Reduce columns Q + 1, ..., P of X12, X22
  364: *
  365:          DO I = Q + 1, P
  366: *
  367:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4, 0.0D0 ), X12(I,I),
  368:      $                  LDX12 )
  369:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  370:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  371:      $                    TAUQ2(I) )
  372:             X12(I,I) = ONE
  373: *
  374:             CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  375:      $                  X12(I+1,I), LDX12, WORK )
  376:             IF( M-P-Q .GE. 1 )
  377:      $         CALL ZLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
  378:      $                     TAUQ2(I), X22(Q+1,I), LDX22, WORK )
  379: *
  380:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  381: *
  382:          END DO
  383: *
  384: *        Reduce columns P + 1, ..., M - Q of X12, X22
  385: *
  386:          DO I = 1, M - P - Q
  387: *
  388:             CALL ZSCAL( M-P-Q-I+1, DCMPLX( Z2*Z4, 0.0D0 ),
  389:      $                  X22(Q+I,P+I), LDX22 )
  390:             CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
  391:             CALL ZLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
  392:      $                    LDX22, TAUQ2(P+I) )
  393:             X22(Q+I,P+I) = ONE
  394:             CALL ZLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
  395:      $                  TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
  396: *
  397:             CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
  398: *
  399:          END DO
  400: *
  401:       ELSE
  402: *
  403: *        Reduce columns 1, ..., Q of X11, X12, X21, X22
  404: *
  405:          DO I = 1, Q
  406: *
  407:             IF( I .EQ. 1 ) THEN
  408:                CALL ZSCAL( P-I+1, DCMPLX( Z1, 0.0D0 ), X11(I,I),
  409:      $                     LDX11 )
  410:             ELSE
  411:                CALL ZSCAL( P-I+1, DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
  412:      $                     X11(I,I), LDX11 )
  413:                CALL ZAXPY( P-I+1, DCMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
  414:      $                     0.0D0 ), X12(I-1,I), LDX12, X11(I,I), LDX11 )
  415:             END IF
  416:             IF( I .EQ. 1 ) THEN
  417:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2, 0.0D0 ), X21(I,I),
  418:      $                     LDX21 )
  419:             ELSE
  420:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
  421:      $                     X21(I,I), LDX21 )
  422:                CALL ZAXPY( M-P-I+1, DCMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
  423:      $                     0.0D0 ), X22(I-1,I), LDX22, X21(I,I), LDX21 )
  424:             END IF
  425: *
  426:             THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), LDX21 ),
  427:      $                 DZNRM2( P-I+1, X11(I,I), LDX11 ) )
  428: *
  429:             CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
  430:             CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
  431: *
  432:             CALL ZLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
  433:             X11(I,I) = ONE
  434:             CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
  435:      $                    TAUP2(I) )
  436:             X21(I,I) = ONE
  437: *
  438:             CALL ZLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
  439:      $                  X11(I+1,I), LDX11, WORK )
  440:             CALL ZLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I),
  441:      $                  X12(I,I), LDX12, WORK )
  442:             CALL ZLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
  443:      $                  X21(I+1,I), LDX21, WORK )
  444:             CALL ZLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
  445:      $                  TAUP2(I), X22(I,I), LDX22, WORK )
  446: *
  447:             CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
  448:             CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
  449: *
  450:             IF( I .LT. Q ) THEN
  451:                CALL ZSCAL( Q-I, DCMPLX( -Z1*Z3*SIN(THETA(I)), 0.0D0 ),
  452:      $                     X11(I+1,I), 1 )
  453:                CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
  454:      $                     X21(I+1,I), 1, X11(I+1,I), 1 )
  455:             END IF
  456:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4*SIN(THETA(I)), 0.0D0 ),
  457:      $                  X12(I,I), 1 )
  458:             CALL ZAXPY( M-Q-I+1, DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
  459:      $                  X22(I,I), 1, X12(I,I), 1 )
  460: *
  461:             IF( I .LT. Q )
  462:      $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I+1,I), 1 ),
  463:      $                  DZNRM2( M-Q-I+1, X12(I,I), 1 ) )
  464: *
  465:             IF( I .LT. Q ) THEN
  466:                CALL ZLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) )
  467:                X11(I+1,I) = ONE
  468:             END IF
  469:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  470:             X12(I,I) = ONE
  471: *
  472:             IF( I .LT. Q ) THEN
  473:                CALL ZLARF( 'L', Q-I, P-I, X11(I+1,I), 1,
  474:      $                     DCONJG(TAUQ1(I)), X11(I+1,I+1), LDX11, WORK )
  475:                CALL ZLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1,
  476:      $                     DCONJG(TAUQ1(I)), X21(I+1,I+1), LDX21, WORK )
  477:             END IF
  478:             CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
  479:      $                  DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
  480:             CALL ZLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1,
  481:      $                  DCONJG(TAUQ2(I)), X22(I,I+1), LDX22, WORK )
  482: *
  483:          END DO
  484: *
  485: *        Reduce columns Q + 1, ..., P of X12, X22
  486: *
  487:          DO I = Q + 1, P
  488: *
  489:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4, 0.0D0 ), X12(I,I), 1 )
  490:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  491:             X12(I,I) = ONE
  492: *
  493:             CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
  494:      $                  DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
  495:             IF( M-P-Q .GE. 1 )
  496:      $         CALL ZLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1,
  497:      $                     DCONJG(TAUQ2(I)), X22(I,Q+1), LDX22, WORK )
  498: *
  499:          END DO
  500: *
  501: *        Reduce columns P + 1, ..., M - Q of X12, X22
  502: *
  503:          DO I = 1, M - P - Q
  504: *
  505:             CALL ZSCAL( M-P-Q-I+1, DCMPLX( Z2*Z4, 0.0D0 ),
  506:      $                  X22(P+I,Q+I), 1 )
  507:             CALL ZLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
  508:      $                    TAUQ2(P+I) )
  509:             X22(P+I,Q+I) = ONE
  510: *
  511:             CALL ZLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
  512:      $                  DCONJG(TAUQ2(P+I)), X22(P+I,Q+I+1), LDX22,
  513:      $                  WORK )
  514: *
  515:          END DO
  516: *
  517:       END IF
  518: *
  519:       RETURN
  520: *
  521: *     End of ZUNBDB
  522: *
  523:       END
  524: 

CVSweb interface <joel.bertrand@systella.fr>