File:  [local] / rpl / lapack / lapack / zunbdb.f
Revision 1.13: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:07:05 2017 UTC (6 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_27, rpl-4_1_26, HEAD
Cohérence.

    1: *> \brief \b ZUNBDB
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZUNBDB + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
   22: *                          X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
   23: *                          TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          SIGNS, TRANS
   27: *       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
   28: *      $                   Q
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   PHI( * ), THETA( * )
   32: *       COMPLEX*16         TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
   33: *      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
   34: *      $                   X21( LDX21, * ), X22( LDX22, * )
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZUNBDB simultaneously bidiagonalizes the blocks of an M-by-M
   44: *> partitioned unitary matrix X:
   45: *>
   46: *>                                 [ B11 | B12 0  0 ]
   47: *>     [ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**H
   48: *> X = [-----------] = [---------] [----------------] [---------]   .
   49: *>     [ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
   50: *>                                 [  0  |  0  0  I ]
   51: *>
   52: *> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
   53: *> not the case, then X must be transposed and/or permuted. This can be
   54: *> done in constant time using the TRANS and SIGNS options. See ZUNCSD
   55: *> for details.)
   56: *>
   57: *> The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
   58: *> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
   59: *> represented implicitly by Householder vectors.
   60: *>
   61: *> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
   62: *> implicitly by angles THETA, PHI.
   63: *> \endverbatim
   64: *
   65: *  Arguments:
   66: *  ==========
   67: *
   68: *> \param[in] TRANS
   69: *> \verbatim
   70: *>          TRANS is CHARACTER
   71: *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
   72: *>                      order;
   73: *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
   74: *>                      major order.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] SIGNS
   78: *> \verbatim
   79: *>          SIGNS is CHARACTER
   80: *>          = 'O':      The lower-left block is made nonpositive (the
   81: *>                      "other" convention);
   82: *>          otherwise:  The upper-right block is made nonpositive (the
   83: *>                      "default" convention).
   84: *> \endverbatim
   85: *>
   86: *> \param[in] M
   87: *> \verbatim
   88: *>          M is INTEGER
   89: *>          The number of rows and columns in X.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] P
   93: *> \verbatim
   94: *>          P is INTEGER
   95: *>          The number of rows in X11 and X12. 0 <= P <= M.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] Q
   99: *> \verbatim
  100: *>          Q is INTEGER
  101: *>          The number of columns in X11 and X21. 0 <= Q <=
  102: *>          MIN(P,M-P,M-Q).
  103: *> \endverbatim
  104: *>
  105: *> \param[in,out] X11
  106: *> \verbatim
  107: *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
  108: *>          On entry, the top-left block of the unitary matrix to be
  109: *>          reduced. On exit, the form depends on TRANS:
  110: *>          If TRANS = 'N', then
  111: *>             the columns of tril(X11) specify reflectors for P1,
  112: *>             the rows of triu(X11,1) specify reflectors for Q1;
  113: *>          else TRANS = 'T', and
  114: *>             the rows of triu(X11) specify reflectors for P1,
  115: *>             the columns of tril(X11,-1) specify reflectors for Q1.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] LDX11
  119: *> \verbatim
  120: *>          LDX11 is INTEGER
  121: *>          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
  122: *>          P; else LDX11 >= Q.
  123: *> \endverbatim
  124: *>
  125: *> \param[in,out] X12
  126: *> \verbatim
  127: *>          X12 is COMPLEX*16 array, dimension (LDX12,M-Q)
  128: *>          On entry, the top-right block of the unitary matrix to
  129: *>          be reduced. On exit, the form depends on TRANS:
  130: *>          If TRANS = 'N', then
  131: *>             the rows of triu(X12) specify the first P reflectors for
  132: *>             Q2;
  133: *>          else TRANS = 'T', and
  134: *>             the columns of tril(X12) specify the first P reflectors
  135: *>             for Q2.
  136: *> \endverbatim
  137: *>
  138: *> \param[in] LDX12
  139: *> \verbatim
  140: *>          LDX12 is INTEGER
  141: *>          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
  142: *>          P; else LDX11 >= M-Q.
  143: *> \endverbatim
  144: *>
  145: *> \param[in,out] X21
  146: *> \verbatim
  147: *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
  148: *>          On entry, the bottom-left block of the unitary matrix to
  149: *>          be reduced. On exit, the form depends on TRANS:
  150: *>          If TRANS = 'N', then
  151: *>             the columns of tril(X21) specify reflectors for P2;
  152: *>          else TRANS = 'T', and
  153: *>             the rows of triu(X21) specify reflectors for P2.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] LDX21
  157: *> \verbatim
  158: *>          LDX21 is INTEGER
  159: *>          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
  160: *>          M-P; else LDX21 >= Q.
  161: *> \endverbatim
  162: *>
  163: *> \param[in,out] X22
  164: *> \verbatim
  165: *>          X22 is COMPLEX*16 array, dimension (LDX22,M-Q)
  166: *>          On entry, the bottom-right block of the unitary matrix to
  167: *>          be reduced. On exit, the form depends on TRANS:
  168: *>          If TRANS = 'N', then
  169: *>             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
  170: *>             M-P-Q reflectors for Q2,
  171: *>          else TRANS = 'T', and
  172: *>             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
  173: *>             M-P-Q reflectors for P2.
  174: *> \endverbatim
  175: *>
  176: *> \param[in] LDX22
  177: *> \verbatim
  178: *>          LDX22 is INTEGER
  179: *>          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
  180: *>          M-P; else LDX22 >= M-Q.
  181: *> \endverbatim
  182: *>
  183: *> \param[out] THETA
  184: *> \verbatim
  185: *>          THETA is DOUBLE PRECISION array, dimension (Q)
  186: *>          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  187: *>          be computed from the angles THETA and PHI. See Further
  188: *>          Details.
  189: *> \endverbatim
  190: *>
  191: *> \param[out] PHI
  192: *> \verbatim
  193: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
  194: *>          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  195: *>          be computed from the angles THETA and PHI. See Further
  196: *>          Details.
  197: *> \endverbatim
  198: *>
  199: *> \param[out] TAUP1
  200: *> \verbatim
  201: *>          TAUP1 is COMPLEX*16 array, dimension (P)
  202: *>          The scalar factors of the elementary reflectors that define
  203: *>          P1.
  204: *> \endverbatim
  205: *>
  206: *> \param[out] TAUP2
  207: *> \verbatim
  208: *>          TAUP2 is COMPLEX*16 array, dimension (M-P)
  209: *>          The scalar factors of the elementary reflectors that define
  210: *>          P2.
  211: *> \endverbatim
  212: *>
  213: *> \param[out] TAUQ1
  214: *> \verbatim
  215: *>          TAUQ1 is COMPLEX*16 array, dimension (Q)
  216: *>          The scalar factors of the elementary reflectors that define
  217: *>          Q1.
  218: *> \endverbatim
  219: *>
  220: *> \param[out] TAUQ2
  221: *> \verbatim
  222: *>          TAUQ2 is COMPLEX*16 array, dimension (M-Q)
  223: *>          The scalar factors of the elementary reflectors that define
  224: *>          Q2.
  225: *> \endverbatim
  226: *>
  227: *> \param[out] WORK
  228: *> \verbatim
  229: *>          WORK is COMPLEX*16 array, dimension (LWORK)
  230: *> \endverbatim
  231: *>
  232: *> \param[in] LWORK
  233: *> \verbatim
  234: *>          LWORK is INTEGER
  235: *>          The dimension of the array WORK. LWORK >= M-Q.
  236: *>
  237: *>          If LWORK = -1, then a workspace query is assumed; the routine
  238: *>          only calculates the optimal size of the WORK array, returns
  239: *>          this value as the first entry of the WORK array, and no error
  240: *>          message related to LWORK is issued by XERBLA.
  241: *> \endverbatim
  242: *>
  243: *> \param[out] INFO
  244: *> \verbatim
  245: *>          INFO is INTEGER
  246: *>          = 0:  successful exit.
  247: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  248: *> \endverbatim
  249: *
  250: *  Authors:
  251: *  ========
  252: *
  253: *> \author Univ. of Tennessee
  254: *> \author Univ. of California Berkeley
  255: *> \author Univ. of Colorado Denver
  256: *> \author NAG Ltd.
  257: *
  258: *> \date December 2016
  259: *
  260: *> \ingroup complex16OTHERcomputational
  261: *
  262: *> \par Further Details:
  263: *  =====================
  264: *>
  265: *> \verbatim
  266: *>
  267: *>  The bidiagonal blocks B11, B12, B21, and B22 are represented
  268: *>  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
  269: *>  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
  270: *>  lower bidiagonal. Every entry in each bidiagonal band is a product
  271: *>  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
  272: *>  [1] or ZUNCSD for details.
  273: *>
  274: *>  P1, P2, Q1, and Q2 are represented as products of elementary
  275: *>  reflectors. See ZUNCSD for details on generating P1, P2, Q1, and Q2
  276: *>  using ZUNGQR and ZUNGLQ.
  277: *> \endverbatim
  278: *
  279: *> \par References:
  280: *  ================
  281: *>
  282: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  283: *>      Algorithms, 50(1):33-65, 2009.
  284: *>
  285: *  =====================================================================
  286:       SUBROUTINE ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
  287:      $                   X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
  288:      $                   TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
  289: *
  290: *  -- LAPACK computational routine (version 3.7.0) --
  291: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  292: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  293: *     December 2016
  294: *
  295: *     .. Scalar Arguments ..
  296:       CHARACTER          SIGNS, TRANS
  297:       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
  298:      $                   Q
  299: *     ..
  300: *     .. Array Arguments ..
  301:       DOUBLE PRECISION   PHI( * ), THETA( * )
  302:       COMPLEX*16         TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
  303:      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
  304:      $                   X21( LDX21, * ), X22( LDX22, * )
  305: *     ..
  306: *
  307: *  ====================================================================
  308: *
  309: *     .. Parameters ..
  310:       DOUBLE PRECISION   REALONE
  311:       PARAMETER          ( REALONE = 1.0D0 )
  312:       COMPLEX*16         ONE
  313:       PARAMETER          ( ONE = (1.0D0,0.0D0) )
  314: *     ..
  315: *     .. Local Scalars ..
  316:       LOGICAL            COLMAJOR, LQUERY
  317:       INTEGER            I, LWORKMIN, LWORKOPT
  318:       DOUBLE PRECISION   Z1, Z2, Z3, Z4
  319: *     ..
  320: *     .. External Subroutines ..
  321:       EXTERNAL           ZAXPY, ZLARF, ZLARFGP, ZSCAL, XERBLA
  322:       EXTERNAL           ZLACGV
  323: *
  324: *     ..
  325: *     .. External Functions ..
  326:       DOUBLE PRECISION   DZNRM2
  327:       LOGICAL            LSAME
  328:       EXTERNAL           DZNRM2, LSAME
  329: *     ..
  330: *     .. Intrinsic Functions
  331:       INTRINSIC          ATAN2, COS, MAX, MIN, SIN
  332:       INTRINSIC          DCMPLX, DCONJG
  333: *     ..
  334: *     .. Executable Statements ..
  335: *
  336: *     Test input arguments
  337: *
  338:       INFO = 0
  339:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  340:       IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN
  341:          Z1 = REALONE
  342:          Z2 = REALONE
  343:          Z3 = REALONE
  344:          Z4 = REALONE
  345:       ELSE
  346:          Z1 = REALONE
  347:          Z2 = -REALONE
  348:          Z3 = REALONE
  349:          Z4 = -REALONE
  350:       END IF
  351:       LQUERY = LWORK .EQ. -1
  352: *
  353:       IF( M .LT. 0 ) THEN
  354:          INFO = -3
  355:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  356:          INFO = -4
  357:       ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR.
  358:      $         Q .GT. M-Q ) THEN
  359:          INFO = -5
  360:       ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
  361:          INFO = -7
  362:       ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
  363:          INFO = -7
  364:       ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
  365:          INFO = -9
  366:       ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
  367:          INFO = -9
  368:       ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
  369:          INFO = -11
  370:       ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
  371:          INFO = -11
  372:       ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
  373:          INFO = -13
  374:       ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
  375:          INFO = -13
  376:       END IF
  377: *
  378: *     Compute workspace
  379: *
  380:       IF( INFO .EQ. 0 ) THEN
  381:          LWORKOPT = M - Q
  382:          LWORKMIN = M - Q
  383:          WORK(1) = LWORKOPT
  384:          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
  385:             INFO = -21
  386:          END IF
  387:       END IF
  388:       IF( INFO .NE. 0 ) THEN
  389:          CALL XERBLA( 'xORBDB', -INFO )
  390:          RETURN
  391:       ELSE IF( LQUERY ) THEN
  392:          RETURN
  393:       END IF
  394: *
  395: *     Handle column-major and row-major separately
  396: *
  397:       IF( COLMAJOR ) THEN
  398: *
  399: *        Reduce columns 1, ..., Q of X11, X12, X21, and X22
  400: *
  401:          DO I = 1, Q
  402: *
  403:             IF( I .EQ. 1 ) THEN
  404:                CALL ZSCAL( P-I+1, DCMPLX( Z1, 0.0D0 ), X11(I,I), 1 )
  405:             ELSE
  406:                CALL ZSCAL( P-I+1, DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
  407:      $                     X11(I,I), 1 )
  408:                CALL ZAXPY( P-I+1, DCMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
  409:      $                     0.0D0 ), X12(I,I-1), 1, X11(I,I), 1 )
  410:             END IF
  411:             IF( I .EQ. 1 ) THEN
  412:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2, 0.0D0 ), X21(I,I), 1 )
  413:             ELSE
  414:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
  415:      $                     X21(I,I), 1 )
  416:                CALL ZAXPY( M-P-I+1, DCMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
  417:      $                     0.0D0 ), X22(I,I-1), 1, X21(I,I), 1 )
  418:             END IF
  419: *
  420:             THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), 1 ),
  421:      $                 DZNRM2( P-I+1, X11(I,I), 1 ) )
  422: *
  423:             IF( P .GT. I ) THEN
  424:                CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
  425:             ELSE IF ( P .EQ. I ) THEN
  426:                CALL ZLARFGP( P-I+1, X11(I,I), X11(I,I), 1, TAUP1(I) )
  427:             END IF
  428:             X11(I,I) = ONE
  429:             IF ( M-P .GT. I ) THEN
  430:                CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1,
  431:      $                       TAUP2(I) )
  432:             ELSE IF ( M-P .EQ. I ) THEN
  433:                CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I,I), 1,
  434:      $                       TAUP2(I) )
  435:             END IF
  436:             X21(I,I) = ONE
  437: *
  438:             IF ( Q .GT. I ) THEN
  439:                CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1,
  440:      $                     DCONJG(TAUP1(I)), X11(I,I+1), LDX11, WORK )
  441:                CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1,
  442:      $                     DCONJG(TAUP2(I)), X21(I,I+1), LDX21, WORK )
  443:             END IF
  444:             IF ( M-Q+1 .GT. I ) THEN
  445:                CALL ZLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1,
  446:      $                     DCONJG(TAUP1(I)), X12(I,I), LDX12, WORK )
  447:                CALL ZLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1,
  448:      $                     DCONJG(TAUP2(I)), X22(I,I), LDX22, WORK )
  449:             END IF
  450: *
  451:             IF( I .LT. Q ) THEN
  452:                CALL ZSCAL( Q-I, DCMPLX( -Z1*Z3*SIN(THETA(I)), 0.0D0 ),
  453:      $                     X11(I,I+1), LDX11 )
  454:                CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
  455:      $                     X21(I,I+1), LDX21, X11(I,I+1), LDX11 )
  456:             END IF
  457:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4*SIN(THETA(I)), 0.0D0 ),
  458:      $                  X12(I,I), LDX12 )
  459:             CALL ZAXPY( M-Q-I+1, DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
  460:      $                  X22(I,I), LDX22, X12(I,I), LDX12 )
  461: *
  462:             IF( I .LT. Q )
  463:      $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I,I+1), LDX11 ),
  464:      $                  DZNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
  465: *
  466:             IF( I .LT. Q ) THEN
  467:                CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
  468:                IF ( I .EQ. Q-1 ) THEN
  469:                   CALL ZLARFGP( Q-I, X11(I,I+1), X11(I,I+1), LDX11,
  470:      $                          TAUQ1(I) )
  471:                ELSE
  472:                   CALL ZLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
  473:      $                          TAUQ1(I) )
  474:                END IF
  475:                X11(I,I+1) = ONE
  476:             END IF
  477:             IF ( M-Q+1 .GT. I ) THEN
  478:                CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  479:                IF ( M-Q .EQ. I ) THEN
  480:                   CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I), LDX12,
  481:      $                          TAUQ2(I) )
  482:                ELSE
  483:                   CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  484:      $                          TAUQ2(I) )
  485:                END IF
  486:             END IF
  487:             X12(I,I) = ONE
  488: *
  489:             IF( I .LT. Q ) THEN
  490:                CALL ZLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  491:      $                     X11(I+1,I+1), LDX11, WORK )
  492:                CALL ZLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  493:      $                     X21(I+1,I+1), LDX21, WORK )
  494:             END IF
  495:             IF ( P .GT. I ) THEN
  496:                CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  497:      $                     X12(I+1,I), LDX12, WORK )
  498:             END IF
  499:             IF ( M-P .GT. I ) THEN
  500:                CALL ZLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12,
  501:      $                     TAUQ2(I), X22(I+1,I), LDX22, WORK )
  502:             END IF
  503: *
  504:             IF( I .LT. Q )
  505:      $         CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
  506:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  507: *
  508:          END DO
  509: *
  510: *        Reduce columns Q + 1, ..., P of X12, X22
  511: *
  512:          DO I = Q + 1, P
  513: *
  514:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4, 0.0D0 ), X12(I,I),
  515:      $                  LDX12 )
  516:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  517:             IF ( I .GE. M-Q ) THEN
  518:                CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I), LDX12,
  519:      $                       TAUQ2(I) )
  520:             ELSE
  521:                CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  522:      $                       TAUQ2(I) )
  523:             END IF
  524:             X12(I,I) = ONE
  525: *
  526:             IF ( P .GT. I ) THEN
  527:                CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  528:      $                     X12(I+1,I), LDX12, WORK )
  529:             END IF
  530:             IF( M-P-Q .GE. 1 )
  531:      $         CALL ZLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
  532:      $                     TAUQ2(I), X22(Q+1,I), LDX22, WORK )
  533: *
  534:             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
  535: *
  536:          END DO
  537: *
  538: *        Reduce columns P + 1, ..., M - Q of X12, X22
  539: *
  540:          DO I = 1, M - P - Q
  541: *
  542:             CALL ZSCAL( M-P-Q-I+1, DCMPLX( Z2*Z4, 0.0D0 ),
  543:      $                  X22(Q+I,P+I), LDX22 )
  544:             CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
  545:             CALL ZLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
  546:      $                    LDX22, TAUQ2(P+I) )
  547:             X22(Q+I,P+I) = ONE
  548:             CALL ZLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
  549:      $                  TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
  550: *
  551:             CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
  552: *
  553:          END DO
  554: *
  555:       ELSE
  556: *
  557: *        Reduce columns 1, ..., Q of X11, X12, X21, X22
  558: *
  559:          DO I = 1, Q
  560: *
  561:             IF( I .EQ. 1 ) THEN
  562:                CALL ZSCAL( P-I+1, DCMPLX( Z1, 0.0D0 ), X11(I,I),
  563:      $                     LDX11 )
  564:             ELSE
  565:                CALL ZSCAL( P-I+1, DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
  566:      $                     X11(I,I), LDX11 )
  567:                CALL ZAXPY( P-I+1, DCMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
  568:      $                     0.0D0 ), X12(I-1,I), LDX12, X11(I,I), LDX11 )
  569:             END IF
  570:             IF( I .EQ. 1 ) THEN
  571:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2, 0.0D0 ), X21(I,I),
  572:      $                     LDX21 )
  573:             ELSE
  574:                CALL ZSCAL( M-P-I+1, DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
  575:      $                     X21(I,I), LDX21 )
  576:                CALL ZAXPY( M-P-I+1, DCMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
  577:      $                     0.0D0 ), X22(I-1,I), LDX22, X21(I,I), LDX21 )
  578:             END IF
  579: *
  580:             THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), LDX21 ),
  581:      $                 DZNRM2( P-I+1, X11(I,I), LDX11 ) )
  582: *
  583:             CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
  584:             CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
  585: *
  586:             CALL ZLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
  587:             X11(I,I) = ONE
  588:             IF ( I .EQ. M-P ) THEN
  589:                CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I,I), LDX21,
  590:      $                       TAUP2(I) )
  591:             ELSE
  592:                CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
  593:      $                       TAUP2(I) )
  594:             END IF
  595:             X21(I,I) = ONE
  596: *
  597:             CALL ZLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
  598:      $                  X11(I+1,I), LDX11, WORK )
  599:             CALL ZLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I),
  600:      $                  X12(I,I), LDX12, WORK )
  601:             CALL ZLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
  602:      $                  X21(I+1,I), LDX21, WORK )
  603:             CALL ZLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
  604:      $                  TAUP2(I), X22(I,I), LDX22, WORK )
  605: *
  606:             CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
  607:             CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
  608: *
  609:             IF( I .LT. Q ) THEN
  610:                CALL ZSCAL( Q-I, DCMPLX( -Z1*Z3*SIN(THETA(I)), 0.0D0 ),
  611:      $                     X11(I+1,I), 1 )
  612:                CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
  613:      $                     X21(I+1,I), 1, X11(I+1,I), 1 )
  614:             END IF
  615:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4*SIN(THETA(I)), 0.0D0 ),
  616:      $                  X12(I,I), 1 )
  617:             CALL ZAXPY( M-Q-I+1, DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
  618:      $                  X22(I,I), 1, X12(I,I), 1 )
  619: *
  620:             IF( I .LT. Q )
  621:      $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I+1,I), 1 ),
  622:      $                  DZNRM2( M-Q-I+1, X12(I,I), 1 ) )
  623: *
  624:             IF( I .LT. Q ) THEN
  625:                CALL ZLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) )
  626:                X11(I+1,I) = ONE
  627:             END IF
  628:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  629:             X12(I,I) = ONE
  630: *
  631:             IF( I .LT. Q ) THEN
  632:                CALL ZLARF( 'L', Q-I, P-I, X11(I+1,I), 1,
  633:      $                     DCONJG(TAUQ1(I)), X11(I+1,I+1), LDX11, WORK )
  634:                CALL ZLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1,
  635:      $                     DCONJG(TAUQ1(I)), X21(I+1,I+1), LDX21, WORK )
  636:             END IF
  637:             CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
  638:      $                  DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
  639:             IF ( M-P .GT. I ) THEN
  640:                CALL ZLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1,
  641:      $                     DCONJG(TAUQ2(I)), X22(I,I+1), LDX22, WORK )
  642:             END IF
  643: *
  644:          END DO
  645: *
  646: *        Reduce columns Q + 1, ..., P of X12, X22
  647: *
  648:          DO I = Q + 1, P
  649: *
  650:             CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4, 0.0D0 ), X12(I,I), 1 )
  651:             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  652:             X12(I,I) = ONE
  653: *
  654:             IF ( P .GT. I ) THEN
  655:                CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
  656:      $                     DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
  657:             END IF
  658:             IF( M-P-Q .GE. 1 )
  659:      $         CALL ZLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1,
  660:      $                     DCONJG(TAUQ2(I)), X22(I,Q+1), LDX22, WORK )
  661: *
  662:          END DO
  663: *
  664: *        Reduce columns P + 1, ..., M - Q of X12, X22
  665: *
  666:          DO I = 1, M - P - Q
  667: *
  668:             CALL ZSCAL( M-P-Q-I+1, DCMPLX( Z2*Z4, 0.0D0 ),
  669:      $                  X22(P+I,Q+I), 1 )
  670:             CALL ZLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
  671:      $                    TAUQ2(P+I) )
  672:             X22(P+I,Q+I) = ONE
  673: *
  674:             IF ( M-P-Q .NE. I ) THEN
  675:                CALL ZLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
  676:      $                     DCONJG(TAUQ2(P+I)), X22(P+I,Q+I+1), LDX22,
  677:      $                     WORK )
  678:             END IF
  679: *
  680:          END DO
  681: *
  682:       END IF
  683: *
  684:       RETURN
  685: *
  686: *     End of ZUNBDB
  687: *
  688:       END
  689: 

CVSweb interface <joel.bertrand@systella.fr>