File:  [local] / rpl / lapack / lapack / ztzrzf.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE ZTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            INFO, LDA, LWORK, M, N
   10: *     ..
   11: *     .. Array Arguments ..
   12:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
   13: *     ..
   14: *
   15: *  Purpose
   16: *  =======
   17: *
   18: *  ZTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
   19: *  to upper triangular form by means of unitary transformations.
   20: *
   21: *  The upper trapezoidal matrix A is factored as
   22: *
   23: *     A = ( R  0 ) * Z,
   24: *
   25: *  where Z is an N-by-N unitary matrix and R is an M-by-M upper
   26: *  triangular matrix.
   27: *
   28: *  Arguments
   29: *  =========
   30: *
   31: *  M       (input) INTEGER
   32: *          The number of rows of the matrix A.  M >= 0.
   33: *
   34: *  N       (input) INTEGER
   35: *          The number of columns of the matrix A.  N >= M.
   36: *
   37: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   38: *          On entry, the leading M-by-N upper trapezoidal part of the
   39: *          array A must contain the matrix to be factorized.
   40: *          On exit, the leading M-by-M upper triangular part of A
   41: *          contains the upper triangular matrix R, and elements M+1 to
   42: *          N of the first M rows of A, with the array TAU, represent the
   43: *          unitary matrix Z as a product of M elementary reflectors.
   44: *
   45: *  LDA     (input) INTEGER
   46: *          The leading dimension of the array A.  LDA >= max(1,M).
   47: *
   48: *  TAU     (output) COMPLEX*16 array, dimension (M)
   49: *          The scalar factors of the elementary reflectors.
   50: *
   51: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
   52: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   53: *
   54: *  LWORK   (input) INTEGER
   55: *          The dimension of the array WORK.  LWORK >= max(1,M).
   56: *          For optimum performance LWORK >= M*NB, where NB is
   57: *          the optimal blocksize.
   58: *
   59: *          If LWORK = -1, then a workspace query is assumed; the routine
   60: *          only calculates the optimal size of the WORK array, returns
   61: *          this value as the first entry of the WORK array, and no error
   62: *          message related to LWORK is issued by XERBLA.
   63: *
   64: *  INFO    (output) INTEGER
   65: *          = 0:  successful exit
   66: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   67: *
   68: *  Further Details
   69: *  ===============
   70: *
   71: *  Based on contributions by
   72: *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
   73: *
   74: *  The factorization is obtained by Householder's method.  The kth
   75: *  transformation matrix, Z( k ), which is used to introduce zeros into
   76: *  the ( m - k + 1 )th row of A, is given in the form
   77: *
   78: *     Z( k ) = ( I     0   ),
   79: *              ( 0  T( k ) )
   80: *
   81: *  where
   82: *
   83: *     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ),
   84: *                                                 (   0    )
   85: *                                                 ( z( k ) )
   86: *
   87: *  tau is a scalar and z( k ) is an ( n - m ) element vector.
   88: *  tau and z( k ) are chosen to annihilate the elements of the kth row
   89: *  of X.
   90: *
   91: *  The scalar tau is returned in the kth element of TAU and the vector
   92: *  u( k ) in the kth row of A, such that the elements of z( k ) are
   93: *  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
   94: *  the upper triangular part of A.
   95: *
   96: *  Z is given by
   97: *
   98: *     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
   99: *
  100: *  =====================================================================
  101: *
  102: *     .. Parameters ..
  103:       COMPLEX*16         ZERO
  104:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  105: *     ..
  106: *     .. Local Scalars ..
  107:       LOGICAL            LQUERY
  108:       INTEGER            I, IB, IWS, KI, KK, LDWORK, LWKOPT, M1, MU, NB,
  109:      $                   NBMIN, NX
  110: *     ..
  111: *     .. External Subroutines ..
  112:       EXTERNAL           XERBLA, ZLARZB, ZLARZT, ZLATRZ
  113: *     ..
  114: *     .. Intrinsic Functions ..
  115:       INTRINSIC          MAX, MIN
  116: *     ..
  117: *     .. External Functions ..
  118:       INTEGER            ILAENV
  119:       EXTERNAL           ILAENV
  120: *     ..
  121: *     .. Executable Statements ..
  122: *
  123: *     Test the input arguments
  124: *
  125:       INFO = 0
  126:       LQUERY = ( LWORK.EQ.-1 )
  127:       IF( M.LT.0 ) THEN
  128:          INFO = -1
  129:       ELSE IF( N.LT.M ) THEN
  130:          INFO = -2
  131:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  132:          INFO = -4
  133:       END IF
  134: *
  135:       IF( INFO.EQ.0 ) THEN
  136:          IF( M.EQ.0 .OR. M.EQ.N ) THEN
  137:             LWKOPT = 1
  138:          ELSE
  139: *
  140: *           Determine the block size.
  141: *
  142:             NB = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
  143:             LWKOPT = M*NB
  144:          END IF
  145:          WORK( 1 ) = LWKOPT
  146: *
  147:          IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
  148:             INFO = -7
  149:          END IF
  150:       END IF
  151: *
  152:       IF( INFO.NE.0 ) THEN
  153:          CALL XERBLA( 'ZTZRZF', -INFO )
  154:          RETURN
  155:       ELSE IF( LQUERY ) THEN
  156:          RETURN
  157:       END IF
  158: *
  159: *     Quick return if possible
  160: *
  161:       IF( M.EQ.0 ) THEN
  162:          RETURN
  163:       ELSE IF( M.EQ.N ) THEN
  164:          DO 10 I = 1, N
  165:             TAU( I ) = ZERO
  166:    10    CONTINUE
  167:          RETURN
  168:       END IF
  169: *
  170:       NBMIN = 2
  171:       NX = 1
  172:       IWS = M
  173:       IF( NB.GT.1 .AND. NB.LT.M ) THEN
  174: *
  175: *        Determine when to cross over from blocked to unblocked code.
  176: *
  177:          NX = MAX( 0, ILAENV( 3, 'ZGERQF', ' ', M, N, -1, -1 ) )
  178:          IF( NX.LT.M ) THEN
  179: *
  180: *           Determine if workspace is large enough for blocked code.
  181: *
  182:             LDWORK = M
  183:             IWS = LDWORK*NB
  184:             IF( LWORK.LT.IWS ) THEN
  185: *
  186: *              Not enough workspace to use optimal NB:  reduce NB and
  187: *              determine the minimum value of NB.
  188: *
  189:                NB = LWORK / LDWORK
  190:                NBMIN = MAX( 2, ILAENV( 2, 'ZGERQF', ' ', M, N, -1,
  191:      $                 -1 ) )
  192:             END IF
  193:          END IF
  194:       END IF
  195: *
  196:       IF( NB.GE.NBMIN .AND. NB.LT.M .AND. NX.LT.M ) THEN
  197: *
  198: *        Use blocked code initially.
  199: *        The last kk rows are handled by the block method.
  200: *
  201:          M1 = MIN( M+1, N )
  202:          KI = ( ( M-NX-1 ) / NB )*NB
  203:          KK = MIN( M, KI+NB )
  204: *
  205:          DO 20 I = M - KK + KI + 1, M - KK + 1, -NB
  206:             IB = MIN( M-I+1, NB )
  207: *
  208: *           Compute the TZ factorization of the current block
  209: *           A(i:i+ib-1,i:n)
  210: *
  211:             CALL ZLATRZ( IB, N-I+1, N-M, A( I, I ), LDA, TAU( I ),
  212:      $                   WORK )
  213:             IF( I.GT.1 ) THEN
  214: *
  215: *              Form the triangular factor of the block reflector
  216: *              H = H(i+ib-1) . . . H(i+1) H(i)
  217: *
  218:                CALL ZLARZT( 'Backward', 'Rowwise', N-M, IB, A( I, M1 ),
  219:      $                      LDA, TAU( I ), WORK, LDWORK )
  220: *
  221: *              Apply H to A(1:i-1,i:n) from the right
  222: *
  223:                CALL ZLARZB( 'Right', 'No transpose', 'Backward',
  224:      $                      'Rowwise', I-1, N-I+1, IB, N-M, A( I, M1 ),
  225:      $                      LDA, WORK, LDWORK, A( 1, I ), LDA,
  226:      $                      WORK( IB+1 ), LDWORK )
  227:             END IF
  228:    20    CONTINUE
  229:          MU = I + NB - 1
  230:       ELSE
  231:          MU = M
  232:       END IF
  233: *
  234: *     Use unblocked code to factor the last or only block
  235: *
  236:       IF( MU.GT.0 )
  237:      $   CALL ZLATRZ( MU, N, N-M, A, LDA, TAU, WORK )
  238: *
  239:       WORK( 1 ) = LWKOPT
  240: *
  241:       RETURN
  242: *
  243: *     End of ZTZRZF
  244: *
  245:       END

CVSweb interface <joel.bertrand@systella.fr>