Annotation of rpl/lapack/lapack/ztzrzf.f, revision 1.8

1.1       bertrand    1:       SUBROUTINE ZTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
                      2: *
1.8     ! bertrand    3: *  -- LAPACK routine (version 3.3.1) --
1.1       bertrand    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand    6: *  -- April 2011                                                      --
        !             7: * @precisions normal z -> s d c
1.1       bertrand    8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, LDA, LWORK, M, N
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                     14: *     ..
                     15: *
                     16: *  Purpose
                     17: *  =======
                     18: *
                     19: *  ZTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
                     20: *  to upper triangular form by means of unitary transformations.
                     21: *
                     22: *  The upper trapezoidal matrix A is factored as
                     23: *
                     24: *     A = ( R  0 ) * Z,
                     25: *
                     26: *  where Z is an N-by-N unitary matrix and R is an M-by-M upper
                     27: *  triangular matrix.
                     28: *
                     29: *  Arguments
                     30: *  =========
                     31: *
                     32: *  M       (input) INTEGER
                     33: *          The number of rows of the matrix A.  M >= 0.
                     34: *
                     35: *  N       (input) INTEGER
                     36: *          The number of columns of the matrix A.  N >= M.
                     37: *
                     38: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     39: *          On entry, the leading M-by-N upper trapezoidal part of the
                     40: *          array A must contain the matrix to be factorized.
                     41: *          On exit, the leading M-by-M upper triangular part of A
                     42: *          contains the upper triangular matrix R, and elements M+1 to
                     43: *          N of the first M rows of A, with the array TAU, represent the
                     44: *          unitary matrix Z as a product of M elementary reflectors.
                     45: *
                     46: *  LDA     (input) INTEGER
                     47: *          The leading dimension of the array A.  LDA >= max(1,M).
                     48: *
                     49: *  TAU     (output) COMPLEX*16 array, dimension (M)
                     50: *          The scalar factors of the elementary reflectors.
                     51: *
                     52: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     53: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     54: *
                     55: *  LWORK   (input) INTEGER
                     56: *          The dimension of the array WORK.  LWORK >= max(1,M).
                     57: *          For optimum performance LWORK >= M*NB, where NB is
                     58: *          the optimal blocksize.
                     59: *
                     60: *          If LWORK = -1, then a workspace query is assumed; the routine
                     61: *          only calculates the optimal size of the WORK array, returns
                     62: *          this value as the first entry of the WORK array, and no error
                     63: *          message related to LWORK is issued by XERBLA.
                     64: *
                     65: *  INFO    (output) INTEGER
                     66: *          = 0:  successful exit
                     67: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     68: *
                     69: *  Further Details
                     70: *  ===============
                     71: *
                     72: *  Based on contributions by
                     73: *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
                     74: *
                     75: *  The factorization is obtained by Householder's method.  The kth
                     76: *  transformation matrix, Z( k ), which is used to introduce zeros into
                     77: *  the ( m - k + 1 )th row of A, is given in the form
                     78: *
                     79: *     Z( k ) = ( I     0   ),
                     80: *              ( 0  T( k ) )
                     81: *
                     82: *  where
                     83: *
1.8     ! bertrand   84: *     T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
1.1       bertrand   85: *                                                 (   0    )
                     86: *                                                 ( z( k ) )
                     87: *
                     88: *  tau is a scalar and z( k ) is an ( n - m ) element vector.
                     89: *  tau and z( k ) are chosen to annihilate the elements of the kth row
                     90: *  of X.
                     91: *
                     92: *  The scalar tau is returned in the kth element of TAU and the vector
                     93: *  u( k ) in the kth row of A, such that the elements of z( k ) are
                     94: *  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
                     95: *  the upper triangular part of A.
                     96: *
                     97: *  Z is given by
                     98: *
                     99: *     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
                    100: *
                    101: *  =====================================================================
                    102: *
                    103: *     .. Parameters ..
                    104:       COMPLEX*16         ZERO
                    105:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
                    106: *     ..
                    107: *     .. Local Scalars ..
                    108:       LOGICAL            LQUERY
1.8     ! bertrand  109:       INTEGER            I, IB, IWS, KI, KK, LDWORK, LWKMIN, LWKOPT,
        !           110:      $                   M1, MU, NB, NBMIN, NX
1.1       bertrand  111: *     ..
                    112: *     .. External Subroutines ..
                    113:       EXTERNAL           XERBLA, ZLARZB, ZLARZT, ZLATRZ
                    114: *     ..
                    115: *     .. Intrinsic Functions ..
                    116:       INTRINSIC          MAX, MIN
                    117: *     ..
                    118: *     .. External Functions ..
                    119:       INTEGER            ILAENV
                    120:       EXTERNAL           ILAENV
                    121: *     ..
                    122: *     .. Executable Statements ..
                    123: *
                    124: *     Test the input arguments
                    125: *
                    126:       INFO = 0
                    127:       LQUERY = ( LWORK.EQ.-1 )
                    128:       IF( M.LT.0 ) THEN
                    129:          INFO = -1
                    130:       ELSE IF( N.LT.M ) THEN
                    131:          INFO = -2
                    132:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    133:          INFO = -4
                    134:       END IF
                    135: *
                    136:       IF( INFO.EQ.0 ) THEN
                    137:          IF( M.EQ.0 .OR. M.EQ.N ) THEN
                    138:             LWKOPT = 1
1.8     ! bertrand  139:             LWKMIN = 1
1.1       bertrand  140:          ELSE
                    141: *
                    142: *           Determine the block size.
                    143: *
                    144:             NB = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
                    145:             LWKOPT = M*NB
1.8     ! bertrand  146:             LWKMIN = MAX( 1, M )
1.1       bertrand  147:          END IF
                    148:          WORK( 1 ) = LWKOPT
                    149: *
1.8     ! bertrand  150:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
1.1       bertrand  151:             INFO = -7
                    152:          END IF
                    153:       END IF
                    154: *
                    155:       IF( INFO.NE.0 ) THEN
                    156:          CALL XERBLA( 'ZTZRZF', -INFO )
                    157:          RETURN
                    158:       ELSE IF( LQUERY ) THEN
                    159:          RETURN
                    160:       END IF
                    161: *
                    162: *     Quick return if possible
                    163: *
                    164:       IF( M.EQ.0 ) THEN
                    165:          RETURN
                    166:       ELSE IF( M.EQ.N ) THEN
                    167:          DO 10 I = 1, N
                    168:             TAU( I ) = ZERO
                    169:    10    CONTINUE
                    170:          RETURN
                    171:       END IF
                    172: *
                    173:       NBMIN = 2
                    174:       NX = 1
                    175:       IWS = M
                    176:       IF( NB.GT.1 .AND. NB.LT.M ) THEN
                    177: *
                    178: *        Determine when to cross over from blocked to unblocked code.
                    179: *
                    180:          NX = MAX( 0, ILAENV( 3, 'ZGERQF', ' ', M, N, -1, -1 ) )
                    181:          IF( NX.LT.M ) THEN
                    182: *
                    183: *           Determine if workspace is large enough for blocked code.
                    184: *
                    185:             LDWORK = M
                    186:             IWS = LDWORK*NB
                    187:             IF( LWORK.LT.IWS ) THEN
                    188: *
                    189: *              Not enough workspace to use optimal NB:  reduce NB and
                    190: *              determine the minimum value of NB.
                    191: *
                    192:                NB = LWORK / LDWORK
                    193:                NBMIN = MAX( 2, ILAENV( 2, 'ZGERQF', ' ', M, N, -1,
                    194:      $                 -1 ) )
                    195:             END IF
                    196:          END IF
                    197:       END IF
                    198: *
                    199:       IF( NB.GE.NBMIN .AND. NB.LT.M .AND. NX.LT.M ) THEN
                    200: *
                    201: *        Use blocked code initially.
                    202: *        The last kk rows are handled by the block method.
                    203: *
                    204:          M1 = MIN( M+1, N )
                    205:          KI = ( ( M-NX-1 ) / NB )*NB
                    206:          KK = MIN( M, KI+NB )
                    207: *
                    208:          DO 20 I = M - KK + KI + 1, M - KK + 1, -NB
                    209:             IB = MIN( M-I+1, NB )
                    210: *
                    211: *           Compute the TZ factorization of the current block
                    212: *           A(i:i+ib-1,i:n)
                    213: *
                    214:             CALL ZLATRZ( IB, N-I+1, N-M, A( I, I ), LDA, TAU( I ),
                    215:      $                   WORK )
                    216:             IF( I.GT.1 ) THEN
                    217: *
                    218: *              Form the triangular factor of the block reflector
                    219: *              H = H(i+ib-1) . . . H(i+1) H(i)
                    220: *
                    221:                CALL ZLARZT( 'Backward', 'Rowwise', N-M, IB, A( I, M1 ),
                    222:      $                      LDA, TAU( I ), WORK, LDWORK )
                    223: *
                    224: *              Apply H to A(1:i-1,i:n) from the right
                    225: *
                    226:                CALL ZLARZB( 'Right', 'No transpose', 'Backward',
                    227:      $                      'Rowwise', I-1, N-I+1, IB, N-M, A( I, M1 ),
                    228:      $                      LDA, WORK, LDWORK, A( 1, I ), LDA,
                    229:      $                      WORK( IB+1 ), LDWORK )
                    230:             END IF
                    231:    20    CONTINUE
                    232:          MU = I + NB - 1
                    233:       ELSE
                    234:          MU = M
                    235:       END IF
                    236: *
                    237: *     Use unblocked code to factor the last or only block
                    238: *
                    239:       IF( MU.GT.0 )
                    240:      $   CALL ZLATRZ( MU, N, N-M, A, LDA, TAU, WORK )
                    241: *
                    242:       WORK( 1 ) = LWKOPT
                    243: *
                    244:       RETURN
                    245: *
                    246: *     End of ZTZRZF
                    247: *
                    248:       END

CVSweb interface <joel.bertrand@systella.fr>