Annotation of rpl/lapack/lapack/ztzrzf.f, revision 1.19

1.9       bertrand    1: *> \brief \b ZTZRZF
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZTZRZF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztzrzf.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztzrzf.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztzrzf.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
1.16      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, LWORK, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                     28: *       ..
1.16      bertrand   29: *
1.9       bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> ZTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
                     37: *> to upper triangular form by means of unitary transformations.
                     38: *>
                     39: *> The upper trapezoidal matrix A is factored as
                     40: *>
                     41: *>    A = ( R  0 ) * Z,
                     42: *>
                     43: *> where Z is an N-by-N unitary matrix and R is an M-by-M upper
                     44: *> triangular matrix.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] M
                     51: *> \verbatim
                     52: *>          M is INTEGER
                     53: *>          The number of rows of the matrix A.  M >= 0.
                     54: *> \endverbatim
                     55: *>
                     56: *> \param[in] N
                     57: *> \verbatim
                     58: *>          N is INTEGER
                     59: *>          The number of columns of the matrix A.  N >= M.
                     60: *> \endverbatim
                     61: *>
                     62: *> \param[in,out] A
                     63: *> \verbatim
                     64: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     65: *>          On entry, the leading M-by-N upper trapezoidal part of the
                     66: *>          array A must contain the matrix to be factorized.
                     67: *>          On exit, the leading M-by-M upper triangular part of A
                     68: *>          contains the upper triangular matrix R, and elements M+1 to
                     69: *>          N of the first M rows of A, with the array TAU, represent the
                     70: *>          unitary matrix Z as a product of M elementary reflectors.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] LDA
                     74: *> \verbatim
                     75: *>          LDA is INTEGER
                     76: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[out] TAU
                     80: *> \verbatim
                     81: *>          TAU is COMPLEX*16 array, dimension (M)
                     82: *>          The scalar factors of the elementary reflectors.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[out] WORK
                     86: *> \verbatim
                     87: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     88: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] LWORK
                     92: *> \verbatim
                     93: *>          LWORK is INTEGER
                     94: *>          The dimension of the array WORK.  LWORK >= max(1,M).
                     95: *>          For optimum performance LWORK >= M*NB, where NB is
                     96: *>          the optimal blocksize.
                     97: *>
                     98: *>          If LWORK = -1, then a workspace query is assumed; the routine
                     99: *>          only calculates the optimal size of the WORK array, returns
                    100: *>          this value as the first entry of the WORK array, and no error
                    101: *>          message related to LWORK is issued by XERBLA.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[out] INFO
                    105: *> \verbatim
                    106: *>          INFO is INTEGER
                    107: *>          = 0:  successful exit
                    108: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    109: *> \endverbatim
                    110: *
                    111: *  Authors:
                    112: *  ========
                    113: *
1.16      bertrand  114: *> \author Univ. of Tennessee
                    115: *> \author Univ. of California Berkeley
                    116: *> \author Univ. of Colorado Denver
                    117: *> \author NAG Ltd.
1.9       bertrand  118: *
                    119: *> \ingroup complex16OTHERcomputational
                    120: *
                    121: *> \par Contributors:
                    122: *  ==================
                    123: *>
                    124: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
                    125: *
                    126: *> \par Further Details:
                    127: *  =====================
                    128: *>
                    129: *> \verbatim
                    130: *>
1.11      bertrand  131: *>  The N-by-N matrix Z can be computed by
1.9       bertrand  132: *>
1.11      bertrand  133: *>     Z =  Z(1)*Z(2)* ... *Z(M)
1.9       bertrand  134: *>
1.11      bertrand  135: *>  where each N-by-N Z(k) is given by
1.9       bertrand  136: *>
1.11      bertrand  137: *>     Z(k) = I - tau(k)*v(k)*v(k)**H
1.9       bertrand  138: *>
1.11      bertrand  139: *>  with v(k) is the kth row vector of the M-by-N matrix
1.9       bertrand  140: *>
1.11      bertrand  141: *>     V = ( I   A(:,M+1:N) )
1.9       bertrand  142: *>
1.16      bertrand  143: *>  I is the M-by-M identity matrix, A(:,M+1:N)
1.19    ! bertrand  144: *>  is the output stored in A on exit from ZTZRZF,
1.11      bertrand  145: *>  and tau(k) is the kth element of the array TAU.
1.9       bertrand  146: *>
                    147: *> \endverbatim
                    148: *>
                    149: *  =====================================================================
1.1       bertrand  150:       SUBROUTINE ZTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
                    151: *
1.19    ! bertrand  152: *  -- LAPACK computational routine --
1.1       bertrand  153: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    154: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    155: *
                    156: *     .. Scalar Arguments ..
                    157:       INTEGER            INFO, LDA, LWORK, M, N
                    158: *     ..
                    159: *     .. Array Arguments ..
                    160:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                    161: *     ..
                    162: *
                    163: *  =====================================================================
                    164: *
                    165: *     .. Parameters ..
                    166:       COMPLEX*16         ZERO
                    167:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
                    168: *     ..
                    169: *     .. Local Scalars ..
                    170:       LOGICAL            LQUERY
1.8       bertrand  171:       INTEGER            I, IB, IWS, KI, KK, LDWORK, LWKMIN, LWKOPT,
                    172:      $                   M1, MU, NB, NBMIN, NX
1.1       bertrand  173: *     ..
                    174: *     .. External Subroutines ..
                    175:       EXTERNAL           XERBLA, ZLARZB, ZLARZT, ZLATRZ
                    176: *     ..
                    177: *     .. Intrinsic Functions ..
                    178:       INTRINSIC          MAX, MIN
                    179: *     ..
                    180: *     .. External Functions ..
                    181:       INTEGER            ILAENV
                    182:       EXTERNAL           ILAENV
                    183: *     ..
                    184: *     .. Executable Statements ..
                    185: *
                    186: *     Test the input arguments
                    187: *
                    188:       INFO = 0
                    189:       LQUERY = ( LWORK.EQ.-1 )
                    190:       IF( M.LT.0 ) THEN
                    191:          INFO = -1
                    192:       ELSE IF( N.LT.M ) THEN
                    193:          INFO = -2
                    194:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    195:          INFO = -4
                    196:       END IF
                    197: *
                    198:       IF( INFO.EQ.0 ) THEN
                    199:          IF( M.EQ.0 .OR. M.EQ.N ) THEN
                    200:             LWKOPT = 1
1.8       bertrand  201:             LWKMIN = 1
1.1       bertrand  202:          ELSE
                    203: *
                    204: *           Determine the block size.
                    205: *
                    206:             NB = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
                    207:             LWKOPT = M*NB
1.8       bertrand  208:             LWKMIN = MAX( 1, M )
1.1       bertrand  209:          END IF
                    210:          WORK( 1 ) = LWKOPT
                    211: *
1.8       bertrand  212:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
1.1       bertrand  213:             INFO = -7
                    214:          END IF
                    215:       END IF
                    216: *
                    217:       IF( INFO.NE.0 ) THEN
                    218:          CALL XERBLA( 'ZTZRZF', -INFO )
                    219:          RETURN
                    220:       ELSE IF( LQUERY ) THEN
                    221:          RETURN
                    222:       END IF
                    223: *
                    224: *     Quick return if possible
                    225: *
                    226:       IF( M.EQ.0 ) THEN
                    227:          RETURN
                    228:       ELSE IF( M.EQ.N ) THEN
                    229:          DO 10 I = 1, N
                    230:             TAU( I ) = ZERO
                    231:    10    CONTINUE
                    232:          RETURN
                    233:       END IF
                    234: *
                    235:       NBMIN = 2
                    236:       NX = 1
                    237:       IWS = M
                    238:       IF( NB.GT.1 .AND. NB.LT.M ) THEN
                    239: *
                    240: *        Determine when to cross over from blocked to unblocked code.
                    241: *
                    242:          NX = MAX( 0, ILAENV( 3, 'ZGERQF', ' ', M, N, -1, -1 ) )
                    243:          IF( NX.LT.M ) THEN
                    244: *
                    245: *           Determine if workspace is large enough for blocked code.
                    246: *
                    247:             LDWORK = M
                    248:             IWS = LDWORK*NB
                    249:             IF( LWORK.LT.IWS ) THEN
                    250: *
                    251: *              Not enough workspace to use optimal NB:  reduce NB and
                    252: *              determine the minimum value of NB.
                    253: *
                    254:                NB = LWORK / LDWORK
                    255:                NBMIN = MAX( 2, ILAENV( 2, 'ZGERQF', ' ', M, N, -1,
                    256:      $                 -1 ) )
                    257:             END IF
                    258:          END IF
                    259:       END IF
                    260: *
                    261:       IF( NB.GE.NBMIN .AND. NB.LT.M .AND. NX.LT.M ) THEN
                    262: *
                    263: *        Use blocked code initially.
                    264: *        The last kk rows are handled by the block method.
                    265: *
                    266:          M1 = MIN( M+1, N )
                    267:          KI = ( ( M-NX-1 ) / NB )*NB
                    268:          KK = MIN( M, KI+NB )
                    269: *
                    270:          DO 20 I = M - KK + KI + 1, M - KK + 1, -NB
                    271:             IB = MIN( M-I+1, NB )
                    272: *
                    273: *           Compute the TZ factorization of the current block
                    274: *           A(i:i+ib-1,i:n)
                    275: *
                    276:             CALL ZLATRZ( IB, N-I+1, N-M, A( I, I ), LDA, TAU( I ),
                    277:      $                   WORK )
                    278:             IF( I.GT.1 ) THEN
                    279: *
                    280: *              Form the triangular factor of the block reflector
                    281: *              H = H(i+ib-1) . . . H(i+1) H(i)
                    282: *
                    283:                CALL ZLARZT( 'Backward', 'Rowwise', N-M, IB, A( I, M1 ),
                    284:      $                      LDA, TAU( I ), WORK, LDWORK )
                    285: *
                    286: *              Apply H to A(1:i-1,i:n) from the right
                    287: *
                    288:                CALL ZLARZB( 'Right', 'No transpose', 'Backward',
                    289:      $                      'Rowwise', I-1, N-I+1, IB, N-M, A( I, M1 ),
                    290:      $                      LDA, WORK, LDWORK, A( 1, I ), LDA,
                    291:      $                      WORK( IB+1 ), LDWORK )
                    292:             END IF
                    293:    20    CONTINUE
                    294:          MU = I + NB - 1
                    295:       ELSE
                    296:          MU = M
                    297:       END IF
                    298: *
                    299: *     Use unblocked code to factor the last or only block
                    300: *
                    301:       IF( MU.GT.0 )
                    302:      $   CALL ZLATRZ( MU, N, N-M, A, LDA, TAU, WORK )
                    303: *
                    304:       WORK( 1 ) = LWKOPT
                    305: *
                    306:       RETURN
                    307: *
                    308: *     End of ZTZRZF
                    309: *
                    310:       END

CVSweb interface <joel.bertrand@systella.fr>