Annotation of rpl/lapack/lapack/ztzrzf.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
        !             2: *
        !             3: *  -- LAPACK routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            INFO, LDA, LWORK, M, N
        !            10: *     ..
        !            11: *     .. Array Arguments ..
        !            12:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
        !            13: *     ..
        !            14: *
        !            15: *  Purpose
        !            16: *  =======
        !            17: *
        !            18: *  ZTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
        !            19: *  to upper triangular form by means of unitary transformations.
        !            20: *
        !            21: *  The upper trapezoidal matrix A is factored as
        !            22: *
        !            23: *     A = ( R  0 ) * Z,
        !            24: *
        !            25: *  where Z is an N-by-N unitary matrix and R is an M-by-M upper
        !            26: *  triangular matrix.
        !            27: *
        !            28: *  Arguments
        !            29: *  =========
        !            30: *
        !            31: *  M       (input) INTEGER
        !            32: *          The number of rows of the matrix A.  M >= 0.
        !            33: *
        !            34: *  N       (input) INTEGER
        !            35: *          The number of columns of the matrix A.  N >= M.
        !            36: *
        !            37: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            38: *          On entry, the leading M-by-N upper trapezoidal part of the
        !            39: *          array A must contain the matrix to be factorized.
        !            40: *          On exit, the leading M-by-M upper triangular part of A
        !            41: *          contains the upper triangular matrix R, and elements M+1 to
        !            42: *          N of the first M rows of A, with the array TAU, represent the
        !            43: *          unitary matrix Z as a product of M elementary reflectors.
        !            44: *
        !            45: *  LDA     (input) INTEGER
        !            46: *          The leading dimension of the array A.  LDA >= max(1,M).
        !            47: *
        !            48: *  TAU     (output) COMPLEX*16 array, dimension (M)
        !            49: *          The scalar factors of the elementary reflectors.
        !            50: *
        !            51: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !            52: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            53: *
        !            54: *  LWORK   (input) INTEGER
        !            55: *          The dimension of the array WORK.  LWORK >= max(1,M).
        !            56: *          For optimum performance LWORK >= M*NB, where NB is
        !            57: *          the optimal blocksize.
        !            58: *
        !            59: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            60: *          only calculates the optimal size of the WORK array, returns
        !            61: *          this value as the first entry of the WORK array, and no error
        !            62: *          message related to LWORK is issued by XERBLA.
        !            63: *
        !            64: *  INFO    (output) INTEGER
        !            65: *          = 0:  successful exit
        !            66: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !            67: *
        !            68: *  Further Details
        !            69: *  ===============
        !            70: *
        !            71: *  Based on contributions by
        !            72: *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
        !            73: *
        !            74: *  The factorization is obtained by Householder's method.  The kth
        !            75: *  transformation matrix, Z( k ), which is used to introduce zeros into
        !            76: *  the ( m - k + 1 )th row of A, is given in the form
        !            77: *
        !            78: *     Z( k ) = ( I     0   ),
        !            79: *              ( 0  T( k ) )
        !            80: *
        !            81: *  where
        !            82: *
        !            83: *     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ),
        !            84: *                                                 (   0    )
        !            85: *                                                 ( z( k ) )
        !            86: *
        !            87: *  tau is a scalar and z( k ) is an ( n - m ) element vector.
        !            88: *  tau and z( k ) are chosen to annihilate the elements of the kth row
        !            89: *  of X.
        !            90: *
        !            91: *  The scalar tau is returned in the kth element of TAU and the vector
        !            92: *  u( k ) in the kth row of A, such that the elements of z( k ) are
        !            93: *  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
        !            94: *  the upper triangular part of A.
        !            95: *
        !            96: *  Z is given by
        !            97: *
        !            98: *     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
        !            99: *
        !           100: *  =====================================================================
        !           101: *
        !           102: *     .. Parameters ..
        !           103:       COMPLEX*16         ZERO
        !           104:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
        !           105: *     ..
        !           106: *     .. Local Scalars ..
        !           107:       LOGICAL            LQUERY
        !           108:       INTEGER            I, IB, IWS, KI, KK, LDWORK, LWKOPT, M1, MU, NB,
        !           109:      $                   NBMIN, NX
        !           110: *     ..
        !           111: *     .. External Subroutines ..
        !           112:       EXTERNAL           XERBLA, ZLARZB, ZLARZT, ZLATRZ
        !           113: *     ..
        !           114: *     .. Intrinsic Functions ..
        !           115:       INTRINSIC          MAX, MIN
        !           116: *     ..
        !           117: *     .. External Functions ..
        !           118:       INTEGER            ILAENV
        !           119:       EXTERNAL           ILAENV
        !           120: *     ..
        !           121: *     .. Executable Statements ..
        !           122: *
        !           123: *     Test the input arguments
        !           124: *
        !           125:       INFO = 0
        !           126:       LQUERY = ( LWORK.EQ.-1 )
        !           127:       IF( M.LT.0 ) THEN
        !           128:          INFO = -1
        !           129:       ELSE IF( N.LT.M ) THEN
        !           130:          INFO = -2
        !           131:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           132:          INFO = -4
        !           133:       END IF
        !           134: *
        !           135:       IF( INFO.EQ.0 ) THEN
        !           136:          IF( M.EQ.0 .OR. M.EQ.N ) THEN
        !           137:             LWKOPT = 1
        !           138:          ELSE
        !           139: *
        !           140: *           Determine the block size.
        !           141: *
        !           142:             NB = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
        !           143:             LWKOPT = M*NB
        !           144:          END IF
        !           145:          WORK( 1 ) = LWKOPT
        !           146: *
        !           147:          IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
        !           148:             INFO = -7
        !           149:          END IF
        !           150:       END IF
        !           151: *
        !           152:       IF( INFO.NE.0 ) THEN
        !           153:          CALL XERBLA( 'ZTZRZF', -INFO )
        !           154:          RETURN
        !           155:       ELSE IF( LQUERY ) THEN
        !           156:          RETURN
        !           157:       END IF
        !           158: *
        !           159: *     Quick return if possible
        !           160: *
        !           161:       IF( M.EQ.0 ) THEN
        !           162:          RETURN
        !           163:       ELSE IF( M.EQ.N ) THEN
        !           164:          DO 10 I = 1, N
        !           165:             TAU( I ) = ZERO
        !           166:    10    CONTINUE
        !           167:          RETURN
        !           168:       END IF
        !           169: *
        !           170:       NBMIN = 2
        !           171:       NX = 1
        !           172:       IWS = M
        !           173:       IF( NB.GT.1 .AND. NB.LT.M ) THEN
        !           174: *
        !           175: *        Determine when to cross over from blocked to unblocked code.
        !           176: *
        !           177:          NX = MAX( 0, ILAENV( 3, 'ZGERQF', ' ', M, N, -1, -1 ) )
        !           178:          IF( NX.LT.M ) THEN
        !           179: *
        !           180: *           Determine if workspace is large enough for blocked code.
        !           181: *
        !           182:             LDWORK = M
        !           183:             IWS = LDWORK*NB
        !           184:             IF( LWORK.LT.IWS ) THEN
        !           185: *
        !           186: *              Not enough workspace to use optimal NB:  reduce NB and
        !           187: *              determine the minimum value of NB.
        !           188: *
        !           189:                NB = LWORK / LDWORK
        !           190:                NBMIN = MAX( 2, ILAENV( 2, 'ZGERQF', ' ', M, N, -1,
        !           191:      $                 -1 ) )
        !           192:             END IF
        !           193:          END IF
        !           194:       END IF
        !           195: *
        !           196:       IF( NB.GE.NBMIN .AND. NB.LT.M .AND. NX.LT.M ) THEN
        !           197: *
        !           198: *        Use blocked code initially.
        !           199: *        The last kk rows are handled by the block method.
        !           200: *
        !           201:          M1 = MIN( M+1, N )
        !           202:          KI = ( ( M-NX-1 ) / NB )*NB
        !           203:          KK = MIN( M, KI+NB )
        !           204: *
        !           205:          DO 20 I = M - KK + KI + 1, M - KK + 1, -NB
        !           206:             IB = MIN( M-I+1, NB )
        !           207: *
        !           208: *           Compute the TZ factorization of the current block
        !           209: *           A(i:i+ib-1,i:n)
        !           210: *
        !           211:             CALL ZLATRZ( IB, N-I+1, N-M, A( I, I ), LDA, TAU( I ),
        !           212:      $                   WORK )
        !           213:             IF( I.GT.1 ) THEN
        !           214: *
        !           215: *              Form the triangular factor of the block reflector
        !           216: *              H = H(i+ib-1) . . . H(i+1) H(i)
        !           217: *
        !           218:                CALL ZLARZT( 'Backward', 'Rowwise', N-M, IB, A( I, M1 ),
        !           219:      $                      LDA, TAU( I ), WORK, LDWORK )
        !           220: *
        !           221: *              Apply H to A(1:i-1,i:n) from the right
        !           222: *
        !           223:                CALL ZLARZB( 'Right', 'No transpose', 'Backward',
        !           224:      $                      'Rowwise', I-1, N-I+1, IB, N-M, A( I, M1 ),
        !           225:      $                      LDA, WORK, LDWORK, A( 1, I ), LDA,
        !           226:      $                      WORK( IB+1 ), LDWORK )
        !           227:             END IF
        !           228:    20    CONTINUE
        !           229:          MU = I + NB - 1
        !           230:       ELSE
        !           231:          MU = M
        !           232:       END IF
        !           233: *
        !           234: *     Use unblocked code to factor the last or only block
        !           235: *
        !           236:       IF( MU.GT.0 )
        !           237:      $   CALL ZLATRZ( MU, N, N-M, A, LDA, TAU, WORK )
        !           238: *
        !           239:       WORK( 1 ) = LWKOPT
        !           240: *
        !           241:       RETURN
        !           242: *
        !           243: *     End of ZTZRZF
        !           244: *
        !           245:       END

CVSweb interface <joel.bertrand@systella.fr>