File:  [local] / rpl / lapack / lapack / ztzrqf.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:21 2011 UTC (12 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.3.1) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *  -- April 2011                                                      --
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            INFO, LDA, M, N
   10: *     ..
   11: *     .. Array Arguments ..
   12:       COMPLEX*16         A( LDA, * ), TAU( * )
   13: *     ..
   14: *
   15: *  Purpose
   16: *  =======
   17: *
   18: *  This routine is deprecated and has been replaced by routine ZTZRZF.
   19: *
   20: *  ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
   21: *  to upper triangular form by means of unitary transformations.
   22: *
   23: *  The upper trapezoidal matrix A is factored as
   24: *
   25: *     A = ( R  0 ) * Z,
   26: *
   27: *  where Z is an N-by-N unitary matrix and R is an M-by-M upper
   28: *  triangular matrix.
   29: *
   30: *  Arguments
   31: *  =========
   32: *
   33: *  M       (input) INTEGER
   34: *          The number of rows of the matrix A.  M >= 0.
   35: *
   36: *  N       (input) INTEGER
   37: *          The number of columns of the matrix A.  N >= M.
   38: *
   39: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   40: *          On entry, the leading M-by-N upper trapezoidal part of the
   41: *          array A must contain the matrix to be factorized.
   42: *          On exit, the leading M-by-M upper triangular part of A
   43: *          contains the upper triangular matrix R, and elements M+1 to
   44: *          N of the first M rows of A, with the array TAU, represent the
   45: *          unitary matrix Z as a product of M elementary reflectors.
   46: *
   47: *  LDA     (input) INTEGER
   48: *          The leading dimension of the array A.  LDA >= max(1,M).
   49: *
   50: *  TAU     (output) COMPLEX*16 array, dimension (M)
   51: *          The scalar factors of the elementary reflectors.
   52: *
   53: *  INFO    (output) INTEGER
   54: *          = 0: successful exit
   55: *          < 0: if INFO = -i, the i-th argument had an illegal value
   56: *
   57: *  Further Details
   58: *  ===============
   59: *
   60: *  The  factorization is obtained by Householder's method.  The kth
   61: *  transformation matrix, Z( k ), whose conjugate transpose is used to
   62: *  introduce zeros into the (m - k + 1)th row of A, is given in the form
   63: *
   64: *     Z( k ) = ( I     0   ),
   65: *              ( 0  T( k ) )
   66: *
   67: *  where
   68: *
   69: *     T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
   70: *                                                   (   0    )
   71: *                                                   ( z( k ) )
   72: *
   73: *  tau is a scalar and z( k ) is an ( n - m ) element vector.
   74: *  tau and z( k ) are chosen to annihilate the elements of the kth row
   75: *  of X.
   76: *
   77: *  The scalar tau is returned in the kth element of TAU and the vector
   78: *  u( k ) in the kth row of A, such that the elements of z( k ) are
   79: *  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
   80: *  the upper triangular part of A.
   81: *
   82: *  Z is given by
   83: *
   84: *     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
   85: *
   86: * =====================================================================
   87: *
   88: *     .. Parameters ..
   89:       COMPLEX*16         CONE, CZERO
   90:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
   91:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
   92: *     ..
   93: *     .. Local Scalars ..
   94:       INTEGER            I, K, M1
   95:       COMPLEX*16         ALPHA
   96: *     ..
   97: *     .. Intrinsic Functions ..
   98:       INTRINSIC          DCONJG, MAX, MIN
   99: *     ..
  100: *     .. External Subroutines ..
  101:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGERC, ZLACGV,
  102:      $                   ZLARFG
  103: *     ..
  104: *     .. Executable Statements ..
  105: *
  106: *     Test the input parameters.
  107: *
  108:       INFO = 0
  109:       IF( M.LT.0 ) THEN
  110:          INFO = -1
  111:       ELSE IF( N.LT.M ) THEN
  112:          INFO = -2
  113:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  114:          INFO = -4
  115:       END IF
  116:       IF( INFO.NE.0 ) THEN
  117:          CALL XERBLA( 'ZTZRQF', -INFO )
  118:          RETURN
  119:       END IF
  120: *
  121: *     Perform the factorization.
  122: *
  123:       IF( M.EQ.0 )
  124:      $   RETURN
  125:       IF( M.EQ.N ) THEN
  126:          DO 10 I = 1, N
  127:             TAU( I ) = CZERO
  128:    10    CONTINUE
  129:       ELSE
  130:          M1 = MIN( M+1, N )
  131:          DO 20 K = M, 1, -1
  132: *
  133: *           Use a Householder reflection to zero the kth row of A.
  134: *           First set up the reflection.
  135: *
  136:             A( K, K ) = DCONJG( A( K, K ) )
  137:             CALL ZLACGV( N-M, A( K, M1 ), LDA )
  138:             ALPHA = A( K, K )
  139:             CALL ZLARFG( N-M+1, ALPHA, A( K, M1 ), LDA, TAU( K ) )
  140:             A( K, K ) = ALPHA
  141:             TAU( K ) = DCONJG( TAU( K ) )
  142: *
  143:             IF( TAU( K ).NE.CZERO .AND. K.GT.1 ) THEN
  144: *
  145: *              We now perform the operation  A := A*P( k )**H.
  146: *
  147: *              Use the first ( k - 1 ) elements of TAU to store  a( k ),
  148: *              where  a( k ) consists of the first ( k - 1 ) elements of
  149: *              the  kth column  of  A.  Also  let  B  denote  the  first
  150: *              ( k - 1 ) rows of the last ( n - m ) columns of A.
  151: *
  152:                CALL ZCOPY( K-1, A( 1, K ), 1, TAU, 1 )
  153: *
  154: *              Form   w = a( k ) + B*z( k )  in TAU.
  155: *
  156:                CALL ZGEMV( 'No transpose', K-1, N-M, CONE, A( 1, M1 ),
  157:      $                     LDA, A( K, M1 ), LDA, CONE, TAU, 1 )
  158: *
  159: *              Now form  a( k ) := a( k ) - conjg(tau)*w
  160: *              and       B      := B      - conjg(tau)*w*z( k )**H.
  161: *
  162:                CALL ZAXPY( K-1, -DCONJG( TAU( K ) ), TAU, 1, A( 1, K ),
  163:      $                     1 )
  164:                CALL ZGERC( K-1, N-M, -DCONJG( TAU( K ) ), TAU, 1,
  165:      $                     A( K, M1 ), LDA, A( 1, M1 ), LDA )
  166:             END IF
  167:    20    CONTINUE
  168:       END IF
  169: *
  170:       RETURN
  171: *
  172: *     End of ZTZRQF
  173: *
  174:       END

CVSweb interface <joel.bertrand@systella.fr>