Annotation of rpl/lapack/lapack/ztzrqf.f, revision 1.8

1.1       bertrand    1:       SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
                      2: *
1.5       bertrand    3: *  -- LAPACK routine (version 3.2.2) --
1.1       bertrand    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.5       bertrand    6: *     June 2010
1.1       bertrand    7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            INFO, LDA, M, N
                     10: *     ..
                     11: *     .. Array Arguments ..
                     12:       COMPLEX*16         A( LDA, * ), TAU( * )
                     13: *     ..
                     14: *
                     15: *  Purpose
                     16: *  =======
                     17: *
                     18: *  This routine is deprecated and has been replaced by routine ZTZRZF.
                     19: *
                     20: *  ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
                     21: *  to upper triangular form by means of unitary transformations.
                     22: *
                     23: *  The upper trapezoidal matrix A is factored as
                     24: *
                     25: *     A = ( R  0 ) * Z,
                     26: *
                     27: *  where Z is an N-by-N unitary matrix and R is an M-by-M upper
                     28: *  triangular matrix.
                     29: *
                     30: *  Arguments
                     31: *  =========
                     32: *
                     33: *  M       (input) INTEGER
                     34: *          The number of rows of the matrix A.  M >= 0.
                     35: *
                     36: *  N       (input) INTEGER
                     37: *          The number of columns of the matrix A.  N >= M.
                     38: *
                     39: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     40: *          On entry, the leading M-by-N upper trapezoidal part of the
                     41: *          array A must contain the matrix to be factorized.
                     42: *          On exit, the leading M-by-M upper triangular part of A
                     43: *          contains the upper triangular matrix R, and elements M+1 to
                     44: *          N of the first M rows of A, with the array TAU, represent the
                     45: *          unitary matrix Z as a product of M elementary reflectors.
                     46: *
                     47: *  LDA     (input) INTEGER
                     48: *          The leading dimension of the array A.  LDA >= max(1,M).
                     49: *
                     50: *  TAU     (output) COMPLEX*16 array, dimension (M)
                     51: *          The scalar factors of the elementary reflectors.
                     52: *
                     53: *  INFO    (output) INTEGER
                     54: *          = 0: successful exit
                     55: *          < 0: if INFO = -i, the i-th argument had an illegal value
                     56: *
                     57: *  Further Details
                     58: *  ===============
                     59: *
                     60: *  The  factorization is obtained by Householder's method.  The kth
                     61: *  transformation matrix, Z( k ), whose conjugate transpose is used to
                     62: *  introduce zeros into the (m - k + 1)th row of A, is given in the form
                     63: *
                     64: *     Z( k ) = ( I     0   ),
                     65: *              ( 0  T( k ) )
                     66: *
                     67: *  where
                     68: *
                     69: *     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ),
                     70: *                                                 (   0    )
                     71: *                                                 ( z( k ) )
                     72: *
                     73: *  tau is a scalar and z( k ) is an ( n - m ) element vector.
                     74: *  tau and z( k ) are chosen to annihilate the elements of the kth row
                     75: *  of X.
                     76: *
                     77: *  The scalar tau is returned in the kth element of TAU and the vector
                     78: *  u( k ) in the kth row of A, such that the elements of z( k ) are
                     79: *  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
                     80: *  the upper triangular part of A.
                     81: *
                     82: *  Z is given by
                     83: *
                     84: *     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
                     85: *
                     86: * =====================================================================
                     87: *
                     88: *     .. Parameters ..
                     89:       COMPLEX*16         CONE, CZERO
                     90:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
                     91:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
                     92: *     ..
                     93: *     .. Local Scalars ..
                     94:       INTEGER            I, K, M1
                     95:       COMPLEX*16         ALPHA
                     96: *     ..
                     97: *     .. Intrinsic Functions ..
                     98:       INTRINSIC          DCONJG, MAX, MIN
                     99: *     ..
                    100: *     .. External Subroutines ..
                    101:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGERC, ZLACGV,
1.5       bertrand  102:      $                   ZLARFG
1.1       bertrand  103: *     ..
                    104: *     .. Executable Statements ..
                    105: *
                    106: *     Test the input parameters.
                    107: *
                    108:       INFO = 0
                    109:       IF( M.LT.0 ) THEN
                    110:          INFO = -1
                    111:       ELSE IF( N.LT.M ) THEN
                    112:          INFO = -2
                    113:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    114:          INFO = -4
                    115:       END IF
                    116:       IF( INFO.NE.0 ) THEN
                    117:          CALL XERBLA( 'ZTZRQF', -INFO )
                    118:          RETURN
                    119:       END IF
                    120: *
                    121: *     Perform the factorization.
                    122: *
                    123:       IF( M.EQ.0 )
                    124:      $   RETURN
                    125:       IF( M.EQ.N ) THEN
                    126:          DO 10 I = 1, N
                    127:             TAU( I ) = CZERO
                    128:    10    CONTINUE
                    129:       ELSE
                    130:          M1 = MIN( M+1, N )
                    131:          DO 20 K = M, 1, -1
                    132: *
                    133: *           Use a Householder reflection to zero the kth row of A.
                    134: *           First set up the reflection.
                    135: *
                    136:             A( K, K ) = DCONJG( A( K, K ) )
                    137:             CALL ZLACGV( N-M, A( K, M1 ), LDA )
                    138:             ALPHA = A( K, K )
1.5       bertrand  139:             CALL ZLARFG( N-M+1, ALPHA, A( K, M1 ), LDA, TAU( K ) )
1.1       bertrand  140:             A( K, K ) = ALPHA
                    141:             TAU( K ) = DCONJG( TAU( K ) )
                    142: *
                    143:             IF( TAU( K ).NE.CZERO .AND. K.GT.1 ) THEN
                    144: *
                    145: *              We now perform the operation  A := A*P( k )'.
                    146: *
                    147: *              Use the first ( k - 1 ) elements of TAU to store  a( k ),
                    148: *              where  a( k ) consists of the first ( k - 1 ) elements of
                    149: *              the  kth column  of  A.  Also  let  B  denote  the  first
                    150: *              ( k - 1 ) rows of the last ( n - m ) columns of A.
                    151: *
                    152:                CALL ZCOPY( K-1, A( 1, K ), 1, TAU, 1 )
                    153: *
                    154: *              Form   w = a( k ) + B*z( k )  in TAU.
                    155: *
                    156:                CALL ZGEMV( 'No transpose', K-1, N-M, CONE, A( 1, M1 ),
                    157:      $                     LDA, A( K, M1 ), LDA, CONE, TAU, 1 )
                    158: *
                    159: *              Now form  a( k ) := a( k ) - conjg(tau)*w
                    160: *              and       B      := B      - conjg(tau)*w*z( k )'.
                    161: *
                    162:                CALL ZAXPY( K-1, -DCONJG( TAU( K ) ), TAU, 1, A( 1, K ),
                    163:      $                     1 )
                    164:                CALL ZGERC( K-1, N-M, -DCONJG( TAU( K ) ), TAU, 1,
                    165:      $                     A( K, M1 ), LDA, A( 1, M1 ), LDA )
                    166:             END IF
                    167:    20    CONTINUE
                    168:       END IF
                    169: *
                    170:       RETURN
                    171: *
                    172: *     End of ZTZRQF
                    173: *
                    174:       END

CVSweb interface <joel.bertrand@systella.fr>