Annotation of rpl/lapack/lapack/ztzrqf.f, revision 1.19

1.10      bertrand    1: *> \brief \b ZTZRQF
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.10      bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZTZRQF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztzrqf.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztzrqf.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztzrqf.f">
1.10      bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.10      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
1.16      bertrand   22: *
1.10      bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       COMPLEX*16         A( LDA, * ), TAU( * )
                     28: *       ..
1.16      bertrand   29: *
1.10      bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> This routine is deprecated and has been replaced by routine ZTZRZF.
                     37: *>
                     38: *> ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
                     39: *> to upper triangular form by means of unitary transformations.
                     40: *>
                     41: *> The upper trapezoidal matrix A is factored as
                     42: *>
                     43: *>    A = ( R  0 ) * Z,
                     44: *>
                     45: *> where Z is an N-by-N unitary matrix and R is an M-by-M upper
                     46: *> triangular matrix.
                     47: *> \endverbatim
                     48: *
                     49: *  Arguments:
                     50: *  ==========
                     51: *
                     52: *> \param[in] M
                     53: *> \verbatim
                     54: *>          M is INTEGER
                     55: *>          The number of rows of the matrix A.  M >= 0.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] N
                     59: *> \verbatim
                     60: *>          N is INTEGER
                     61: *>          The number of columns of the matrix A.  N >= M.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in,out] A
                     65: *> \verbatim
                     66: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     67: *>          On entry, the leading M-by-N upper trapezoidal part of the
                     68: *>          array A must contain the matrix to be factorized.
                     69: *>          On exit, the leading M-by-M upper triangular part of A
                     70: *>          contains the upper triangular matrix R, and elements M+1 to
                     71: *>          N of the first M rows of A, with the array TAU, represent the
                     72: *>          unitary matrix Z as a product of M elementary reflectors.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] LDA
                     76: *> \verbatim
                     77: *>          LDA is INTEGER
                     78: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[out] TAU
                     82: *> \verbatim
                     83: *>          TAU is COMPLEX*16 array, dimension (M)
                     84: *>          The scalar factors of the elementary reflectors.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[out] INFO
                     88: *> \verbatim
                     89: *>          INFO is INTEGER
                     90: *>          = 0: successful exit
                     91: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                     92: *> \endverbatim
                     93: *
                     94: *  Authors:
                     95: *  ========
                     96: *
1.16      bertrand   97: *> \author Univ. of Tennessee
                     98: *> \author Univ. of California Berkeley
                     99: *> \author Univ. of Colorado Denver
                    100: *> \author NAG Ltd.
1.10      bertrand  101: *
                    102: *> \ingroup complex16OTHERcomputational
                    103: *
                    104: *> \par Further Details:
                    105: *  =====================
                    106: *>
                    107: *> \verbatim
                    108: *>
                    109: *>  The  factorization is obtained by Householder's method.  The kth
                    110: *>  transformation matrix, Z( k ), whose conjugate transpose is used to
                    111: *>  introduce zeros into the (m - k + 1)th row of A, is given in the form
                    112: *>
                    113: *>     Z( k ) = ( I     0   ),
                    114: *>              ( 0  T( k ) )
                    115: *>
                    116: *>  where
                    117: *>
                    118: *>     T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
                    119: *>                                                   (   0    )
                    120: *>                                                   ( z( k ) )
                    121: *>
                    122: *>  tau is a scalar and z( k ) is an ( n - m ) element vector.
                    123: *>  tau and z( k ) are chosen to annihilate the elements of the kth row
                    124: *>  of X.
                    125: *>
                    126: *>  The scalar tau is returned in the kth element of TAU and the vector
                    127: *>  u( k ) in the kth row of A, such that the elements of z( k ) are
                    128: *>  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
                    129: *>  the upper triangular part of A.
                    130: *>
                    131: *>  Z is given by
                    132: *>
                    133: *>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
                    134: *> \endverbatim
                    135: *>
                    136: *  =====================================================================
1.1       bertrand  137:       SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
                    138: *
1.19    ! bertrand  139: *  -- LAPACK computational routine --
1.1       bertrand  140: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    141: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    142: *
                    143: *     .. Scalar Arguments ..
                    144:       INTEGER            INFO, LDA, M, N
                    145: *     ..
                    146: *     .. Array Arguments ..
                    147:       COMPLEX*16         A( LDA, * ), TAU( * )
                    148: *     ..
                    149: *
                    150: * =====================================================================
                    151: *
                    152: *     .. Parameters ..
                    153:       COMPLEX*16         CONE, CZERO
                    154:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
                    155:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
                    156: *     ..
                    157: *     .. Local Scalars ..
                    158:       INTEGER            I, K, M1
                    159:       COMPLEX*16         ALPHA
                    160: *     ..
                    161: *     .. Intrinsic Functions ..
                    162:       INTRINSIC          DCONJG, MAX, MIN
                    163: *     ..
                    164: *     .. External Subroutines ..
                    165:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGERC, ZLACGV,
1.5       bertrand  166:      $                   ZLARFG
1.1       bertrand  167: *     ..
                    168: *     .. Executable Statements ..
                    169: *
                    170: *     Test the input parameters.
                    171: *
                    172:       INFO = 0
                    173:       IF( M.LT.0 ) THEN
                    174:          INFO = -1
                    175:       ELSE IF( N.LT.M ) THEN
                    176:          INFO = -2
                    177:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    178:          INFO = -4
                    179:       END IF
                    180:       IF( INFO.NE.0 ) THEN
                    181:          CALL XERBLA( 'ZTZRQF', -INFO )
                    182:          RETURN
                    183:       END IF
                    184: *
                    185: *     Perform the factorization.
                    186: *
                    187:       IF( M.EQ.0 )
                    188:      $   RETURN
                    189:       IF( M.EQ.N ) THEN
                    190:          DO 10 I = 1, N
                    191:             TAU( I ) = CZERO
                    192:    10    CONTINUE
                    193:       ELSE
                    194:          M1 = MIN( M+1, N )
                    195:          DO 20 K = M, 1, -1
                    196: *
                    197: *           Use a Householder reflection to zero the kth row of A.
                    198: *           First set up the reflection.
                    199: *
                    200:             A( K, K ) = DCONJG( A( K, K ) )
                    201:             CALL ZLACGV( N-M, A( K, M1 ), LDA )
                    202:             ALPHA = A( K, K )
1.5       bertrand  203:             CALL ZLARFG( N-M+1, ALPHA, A( K, M1 ), LDA, TAU( K ) )
1.1       bertrand  204:             A( K, K ) = ALPHA
                    205:             TAU( K ) = DCONJG( TAU( K ) )
                    206: *
                    207:             IF( TAU( K ).NE.CZERO .AND. K.GT.1 ) THEN
                    208: *
1.9       bertrand  209: *              We now perform the operation  A := A*P( k )**H.
1.1       bertrand  210: *
                    211: *              Use the first ( k - 1 ) elements of TAU to store  a( k ),
                    212: *              where  a( k ) consists of the first ( k - 1 ) elements of
                    213: *              the  kth column  of  A.  Also  let  B  denote  the  first
                    214: *              ( k - 1 ) rows of the last ( n - m ) columns of A.
                    215: *
                    216:                CALL ZCOPY( K-1, A( 1, K ), 1, TAU, 1 )
                    217: *
                    218: *              Form   w = a( k ) + B*z( k )  in TAU.
                    219: *
                    220:                CALL ZGEMV( 'No transpose', K-1, N-M, CONE, A( 1, M1 ),
                    221:      $                     LDA, A( K, M1 ), LDA, CONE, TAU, 1 )
                    222: *
                    223: *              Now form  a( k ) := a( k ) - conjg(tau)*w
1.9       bertrand  224: *              and       B      := B      - conjg(tau)*w*z( k )**H.
1.1       bertrand  225: *
                    226:                CALL ZAXPY( K-1, -DCONJG( TAU( K ) ), TAU, 1, A( 1, K ),
                    227:      $                     1 )
                    228:                CALL ZGERC( K-1, N-M, -DCONJG( TAU( K ) ), TAU, 1,
                    229:      $                     A( K, M1 ), LDA, A( 1, M1 ), LDA )
                    230:             END IF
                    231:    20    CONTINUE
                    232:       END IF
                    233: *
                    234:       RETURN
                    235: *
                    236: *     End of ZTZRQF
                    237: *
                    238:       END

CVSweb interface <joel.bertrand@systella.fr>