Annotation of rpl/lapack/lapack/ztzrqf.f, revision 1.13

1.10      bertrand    1: *> \brief \b ZTZRQF
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZTZRQF + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztzrqf.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztzrqf.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztzrqf.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       COMPLEX*16         A( LDA, * ), TAU( * )
                     28: *       ..
                     29: *  
                     30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> This routine is deprecated and has been replaced by routine ZTZRZF.
                     37: *>
                     38: *> ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
                     39: *> to upper triangular form by means of unitary transformations.
                     40: *>
                     41: *> The upper trapezoidal matrix A is factored as
                     42: *>
                     43: *>    A = ( R  0 ) * Z,
                     44: *>
                     45: *> where Z is an N-by-N unitary matrix and R is an M-by-M upper
                     46: *> triangular matrix.
                     47: *> \endverbatim
                     48: *
                     49: *  Arguments:
                     50: *  ==========
                     51: *
                     52: *> \param[in] M
                     53: *> \verbatim
                     54: *>          M is INTEGER
                     55: *>          The number of rows of the matrix A.  M >= 0.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] N
                     59: *> \verbatim
                     60: *>          N is INTEGER
                     61: *>          The number of columns of the matrix A.  N >= M.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in,out] A
                     65: *> \verbatim
                     66: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     67: *>          On entry, the leading M-by-N upper trapezoidal part of the
                     68: *>          array A must contain the matrix to be factorized.
                     69: *>          On exit, the leading M-by-M upper triangular part of A
                     70: *>          contains the upper triangular matrix R, and elements M+1 to
                     71: *>          N of the first M rows of A, with the array TAU, represent the
                     72: *>          unitary matrix Z as a product of M elementary reflectors.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] LDA
                     76: *> \verbatim
                     77: *>          LDA is INTEGER
                     78: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[out] TAU
                     82: *> \verbatim
                     83: *>          TAU is COMPLEX*16 array, dimension (M)
                     84: *>          The scalar factors of the elementary reflectors.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[out] INFO
                     88: *> \verbatim
                     89: *>          INFO is INTEGER
                     90: *>          = 0: successful exit
                     91: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                     92: *> \endverbatim
                     93: *
                     94: *  Authors:
                     95: *  ========
                     96: *
                     97: *> \author Univ. of Tennessee 
                     98: *> \author Univ. of California Berkeley 
                     99: *> \author Univ. of Colorado Denver 
                    100: *> \author NAG Ltd. 
                    101: *
                    102: *> \date November 2011
                    103: *
                    104: *> \ingroup complex16OTHERcomputational
                    105: *
                    106: *> \par Further Details:
                    107: *  =====================
                    108: *>
                    109: *> \verbatim
                    110: *>
                    111: *>  The  factorization is obtained by Householder's method.  The kth
                    112: *>  transformation matrix, Z( k ), whose conjugate transpose is used to
                    113: *>  introduce zeros into the (m - k + 1)th row of A, is given in the form
                    114: *>
                    115: *>     Z( k ) = ( I     0   ),
                    116: *>              ( 0  T( k ) )
                    117: *>
                    118: *>  where
                    119: *>
                    120: *>     T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
                    121: *>                                                   (   0    )
                    122: *>                                                   ( z( k ) )
                    123: *>
                    124: *>  tau is a scalar and z( k ) is an ( n - m ) element vector.
                    125: *>  tau and z( k ) are chosen to annihilate the elements of the kth row
                    126: *>  of X.
                    127: *>
                    128: *>  The scalar tau is returned in the kth element of TAU and the vector
                    129: *>  u( k ) in the kth row of A, such that the elements of z( k ) are
                    130: *>  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
                    131: *>  the upper triangular part of A.
                    132: *>
                    133: *>  Z is given by
                    134: *>
                    135: *>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
                    136: *> \endverbatim
                    137: *>
                    138: *  =====================================================================
1.1       bertrand  139:       SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
                    140: *
1.10      bertrand  141: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  142: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    143: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10      bertrand  144: *     November 2011
1.1       bertrand  145: *
                    146: *     .. Scalar Arguments ..
                    147:       INTEGER            INFO, LDA, M, N
                    148: *     ..
                    149: *     .. Array Arguments ..
                    150:       COMPLEX*16         A( LDA, * ), TAU( * )
                    151: *     ..
                    152: *
                    153: * =====================================================================
                    154: *
                    155: *     .. Parameters ..
                    156:       COMPLEX*16         CONE, CZERO
                    157:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
                    158:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
                    159: *     ..
                    160: *     .. Local Scalars ..
                    161:       INTEGER            I, K, M1
                    162:       COMPLEX*16         ALPHA
                    163: *     ..
                    164: *     .. Intrinsic Functions ..
                    165:       INTRINSIC          DCONJG, MAX, MIN
                    166: *     ..
                    167: *     .. External Subroutines ..
                    168:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGERC, ZLACGV,
1.5       bertrand  169:      $                   ZLARFG
1.1       bertrand  170: *     ..
                    171: *     .. Executable Statements ..
                    172: *
                    173: *     Test the input parameters.
                    174: *
                    175:       INFO = 0
                    176:       IF( M.LT.0 ) THEN
                    177:          INFO = -1
                    178:       ELSE IF( N.LT.M ) THEN
                    179:          INFO = -2
                    180:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    181:          INFO = -4
                    182:       END IF
                    183:       IF( INFO.NE.0 ) THEN
                    184:          CALL XERBLA( 'ZTZRQF', -INFO )
                    185:          RETURN
                    186:       END IF
                    187: *
                    188: *     Perform the factorization.
                    189: *
                    190:       IF( M.EQ.0 )
                    191:      $   RETURN
                    192:       IF( M.EQ.N ) THEN
                    193:          DO 10 I = 1, N
                    194:             TAU( I ) = CZERO
                    195:    10    CONTINUE
                    196:       ELSE
                    197:          M1 = MIN( M+1, N )
                    198:          DO 20 K = M, 1, -1
                    199: *
                    200: *           Use a Householder reflection to zero the kth row of A.
                    201: *           First set up the reflection.
                    202: *
                    203:             A( K, K ) = DCONJG( A( K, K ) )
                    204:             CALL ZLACGV( N-M, A( K, M1 ), LDA )
                    205:             ALPHA = A( K, K )
1.5       bertrand  206:             CALL ZLARFG( N-M+1, ALPHA, A( K, M1 ), LDA, TAU( K ) )
1.1       bertrand  207:             A( K, K ) = ALPHA
                    208:             TAU( K ) = DCONJG( TAU( K ) )
                    209: *
                    210:             IF( TAU( K ).NE.CZERO .AND. K.GT.1 ) THEN
                    211: *
1.9       bertrand  212: *              We now perform the operation  A := A*P( k )**H.
1.1       bertrand  213: *
                    214: *              Use the first ( k - 1 ) elements of TAU to store  a( k ),
                    215: *              where  a( k ) consists of the first ( k - 1 ) elements of
                    216: *              the  kth column  of  A.  Also  let  B  denote  the  first
                    217: *              ( k - 1 ) rows of the last ( n - m ) columns of A.
                    218: *
                    219:                CALL ZCOPY( K-1, A( 1, K ), 1, TAU, 1 )
                    220: *
                    221: *              Form   w = a( k ) + B*z( k )  in TAU.
                    222: *
                    223:                CALL ZGEMV( 'No transpose', K-1, N-M, CONE, A( 1, M1 ),
                    224:      $                     LDA, A( K, M1 ), LDA, CONE, TAU, 1 )
                    225: *
                    226: *              Now form  a( k ) := a( k ) - conjg(tau)*w
1.9       bertrand  227: *              and       B      := B      - conjg(tau)*w*z( k )**H.
1.1       bertrand  228: *
                    229:                CALL ZAXPY( K-1, -DCONJG( TAU( K ) ), TAU, 1, A( 1, K ),
                    230:      $                     1 )
                    231:                CALL ZGERC( K-1, N-M, -DCONJG( TAU( K ) ), TAU, 1,
                    232:      $                     A( K, M1 ), LDA, A( 1, M1 ), LDA )
                    233:             END IF
                    234:    20    CONTINUE
                    235:       END IF
                    236: *
                    237:       RETURN
                    238: *
                    239: *     End of ZTZRQF
                    240: *
                    241:       END

CVSweb interface <joel.bertrand@systella.fr>